Arid
DOI10.3390/rs9111121
Combining Estimation of Green Vegetation Fraction in an Arid Region from Landsat 7 ETM+ Data
Jia, Kun1,2; Li, Yuwei1,2; Liang, Shunlin1,2,3; Wei, Xiangqin4; Yao, Yunjun1,2
通讯作者Jia, Kun
来源期刊REMOTE SENSING
ISSN2072-4292
出版年2017
卷号9期号:11
英文摘要

Fractional vegetation cover (FVC), or green vegetation fraction, is an important parameter for characterizing conditions of the land surface vegetation, and also a key variable of models for simulating cycles of water, carbon and energy on the land surface. There are several types of FVC estimation models using remote sensing data, and evaluating their performance over a specific region is of great significance. Therefore, this study firstly evaluated three types of FVC estimation models using Landsat 7 ETM+ data in an agriculture region of Heihe River Basin, China, and then proposed a combination strategy from different individual models to improve the FVC estimation accuracy, which employed the multiple linear regression (MLR) and Bayesian model average (BMA) methods. The validation results indicated that the spectral mixture analysis model with three endmembers (SMA3) achieved the best FVC estimation accuracy (determination coefficient (R-2) = 0.902, root mean square error (RMSE) = 0.076) among the seven individual models using Landsat 7 ETM+ data. In addition, the MLR and BMA combination methods could both improve FVC estimation accuracy (R-2 = 0.913, RMSE = 0.063 and R-2 = 0.904, RMSE = 0.069 for MLR and BMA, respectively). Therefore, it could be concluded that both MLR and BMA combination methods integrating FVC estimates from different models using Landsat 7 ETM+ data could effectively weaken the estimation errors of individual models and improve the final FVC estimation accuracy.


英文关键词fractional vegetation cover pixel dimidiate model spectral mixture analysis combination multiple linear regression Bayesian model average Landsat 7 ETM+
类型Article
语种英语
国家Peoples R China ; USA
收录类别SCI-E
WOS记录号WOS:000416554100036
WOS关键词SPECTRAL MIXTURE ANALYSIS ; ESSENTIAL CLIMATE VARIABLES ; COVER ESTIMATION ; GEOV1 LAI ; MODIS ; SURFACE ; INDEX ; NDVI ; AREA ; PREDICTION
WOS类目Remote Sensing
WOS研究方向Remote Sensing
来源机构北京师范大学
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/201973
作者单位1.Beijing Normal Univ, Fac Geog Sci, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China;
2.Beijing Normal Univ, Fac Geog Sci, Inst Remote Sensing Sci & Engn, Beijing Engn Res Ctr Global Land Remote Sensing P, Beijing 100875, Peoples R China;
3.Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA;
4.Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
推荐引用方式
GB/T 7714
Jia, Kun,Li, Yuwei,Liang, Shunlin,et al. Combining Estimation of Green Vegetation Fraction in an Arid Region from Landsat 7 ETM+ Data[J]. 北京师范大学,2017,9(11).
APA Jia, Kun,Li, Yuwei,Liang, Shunlin,Wei, Xiangqin,&Yao, Yunjun.(2017).Combining Estimation of Green Vegetation Fraction in an Arid Region from Landsat 7 ETM+ Data.REMOTE SENSING,9(11).
MLA Jia, Kun,et al."Combining Estimation of Green Vegetation Fraction in an Arid Region from Landsat 7 ETM+ Data".REMOTE SENSING 9.11(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jia, Kun]的文章
[Li, Yuwei]的文章
[Liang, Shunlin]的文章
百度学术
百度学术中相似的文章
[Jia, Kun]的文章
[Li, Yuwei]的文章
[Liang, Shunlin]的文章
必应学术
必应学术中相似的文章
[Jia, Kun]的文章
[Li, Yuwei]的文章
[Liang, Shunlin]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。