Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1371/journal.pone.0180239 |
A machine learning approach to estimation of downward solar radiation from satellite-derived data products: An application over a semi-arid ecosystem in the US | |
Zhou, Qingtao1; Flores, Alejandro1; Glenn, Nancy F.1; Walters, Reggie1; Hang, Bangshuai2 | |
通讯作者 | Zhou, Qingtao |
来源期刊 | PLOS ONE
![]() |
ISSN | 1932-6203 |
出版年 | 2017 |
卷号 | 12期号:8 |
英文摘要 | Shortwave solar radiation is an important component of the surface energy balance and provides the principal source of energy for terrestrial ecosystems. This paper presents a machine learning approach in the form of a random forest (RF) model for estimating daily downward solar radiation flux at the land surface over complex terrain using MODIS (MODerate Resolution Imaging Spectroradiometer) remote sensing data. The model-building technique makes use of a unique network of 16 solar flux measurements in the semi-arid Reynolds Creek Experimental Watershed and Critical Zone Observatory, in southwest Idaho, USA. Based on a composite RF model built on daily observations from all 16 sites in the watershed, the model simulation of downward solar radiation matches well with the observation data (r(2) = 0.96). To evaluate model performance, RF models were built from 12 of 16 sites selected at random and validated against the observations at the remaining four sites. Overall root mean square errors (RMSE), bias, and mean absolute error (MAE) are small (range: 37.17 W/m(2) -81.27 W/m(2), -48.31 W/m(2) -15.67 W/m(2), and 26.56 W/m(2) -63.77 W/m(2), respectively). When extrapolated to the entire watershed, spatiotemporal patterns of solar flux are largely consistent with expected trends in this watershed. We also explored significant predictors of downward solar flux in order to reveal important properties and processes controlling downward solar radiation. Based on the composite RF model built on all 16 sites, the three most important predictors to estimate downward solar radiation include the black sky albedo (BSA) near infrared band (0.858 mu m), BSA visible band (0.3-0.7 mu m), and clear day coverage. This study has important implications for improving the ability to derive downward solar radiation through a fusion of multiple remote sensing datasets and can potentially capture spatiotemporally varying trends in solar radiation that is useful for land surface hydrologic and terrestrial ecosystem modeling. |
类型 | Article |
语种 | 英语 |
国家 | USA |
收录类别 | SCI-E |
WOS记录号 | WOS:000406944300004 |
WOS关键词 | ADIRONDACK REGION ; LAKE-WATERSHEDS ; NEW-YORK ; LAND ; MODIS ; MODELS ; ALBEDO ; SPACE ; ALGORITHM ; BRDF |
WOS类目 | Multidisciplinary Sciences |
WOS研究方向 | Science & Technology - Other Topics |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/201653 |
作者单位 | 1.Boise State Univ, Dept Geosci, Boise, ID 83725 USA; 2.Dept Nat Resources & Environm Management, Muncie, IN USA |
推荐引用方式 GB/T 7714 | Zhou, Qingtao,Flores, Alejandro,Glenn, Nancy F.,et al. A machine learning approach to estimation of downward solar radiation from satellite-derived data products: An application over a semi-arid ecosystem in the US[J],2017,12(8). |
APA | Zhou, Qingtao,Flores, Alejandro,Glenn, Nancy F.,Walters, Reggie,&Hang, Bangshuai.(2017).A machine learning approach to estimation of downward solar radiation from satellite-derived data products: An application over a semi-arid ecosystem in the US.PLOS ONE,12(8). |
MLA | Zhou, Qingtao,et al."A machine learning approach to estimation of downward solar radiation from satellite-derived data products: An application over a semi-arid ecosystem in the US".PLOS ONE 12.8(2017). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。