Arid
DOI10.1155/2017/3515418
Multisource Data Fusion Framework for Land Use/Land Cover Classification Using Machine Vision
Qadri, Salman1; Khan, Dost Muhammad1; Qadri, Syed Furqan2; Razzaq, Abdul3; Ahmad, Nazir1; Jamil, Mutiullah4; Shah, Ali Nawaz1; Muhammad, Syed Shah5; Saleem, Khalid4; Awan, Sarfraz Ahmad5
通讯作者Qadri, Salman
来源期刊JOURNAL OF SENSORS
ISSN1687-725X
EISSN1687-7268
出版年2017
英文摘要

Data fusion is a powerful tool for the merging of multiple sources of information to produce a better output as compared to individual source. This study describes the data fusion of five land use/cover types, that is, bare land, fertile cultivated land, desert rangeland, green pasture, and Sutlej basin river land derived fromremote sensing. A novel framework formultispectral and texture feature based data fusion is designed to identify the land use/land cover data types correctly. Multispectral data is obtained using a multispectral radiometer, while digital camera is used for image dataset. It has been observed that each image contained 229 texture features, while 30 optimized texture features data for each image has been obtained by joining together three features selection techniques, that is, Fisher, Probability of Error plus Average Correlation, and Mutual Information. This 30-optimized-texturefeature dataset is merged with five-spectral-feature dataset to build the fused dataset. A comparison is performed among texture, multispectral, and fused dataset using machine vision classifiers. It has been observed that fused dataset outperformed individually both datasets. The overall accuracy acquired using multilayer perceptron for texture data, multispectral data, and fused data was 96.67%, 97.60%, and 99.60%, respectively.


类型Article
语种英语
国家Pakistan ; Peoples R China
收录类别SCI-E
WOS记录号WOS:000414098200001
WOS关键词FEATURES ; IMPROVE ; SCIENCE
WOS类目Engineering, Electrical & Electronic ; Instruments & Instrumentation
WOS研究方向Engineering ; Instruments & Instrumentation
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/200789
作者单位1.Islamia Univ Bahawalpur, Dept Comp Sci & IT, Punjab 63100, Pakistan;
2.Beijing Inst Technol, Sch Comp Sci, Key Lab Photoelect Imaging Technol & Syst, Beijing 100081, Peoples R China;
3.NFC IET, Dept Comp Sci, Multan 60000, Punjab, Pakistan;
4.Quaid I Azam Univ, Dept Comp Sci, Islamabad 45320, Pakistan;
5.Virtual Univ Pakistan, Dept Comp Sci, Lahore 54000, Punjab, Pakistan
推荐引用方式
GB/T 7714
Qadri, Salman,Khan, Dost Muhammad,Qadri, Syed Furqan,et al. Multisource Data Fusion Framework for Land Use/Land Cover Classification Using Machine Vision[J],2017.
APA Qadri, Salman.,Khan, Dost Muhammad.,Qadri, Syed Furqan.,Razzaq, Abdul.,Ahmad, Nazir.,...&Awan, Sarfraz Ahmad.(2017).Multisource Data Fusion Framework for Land Use/Land Cover Classification Using Machine Vision.JOURNAL OF SENSORS.
MLA Qadri, Salman,et al."Multisource Data Fusion Framework for Land Use/Land Cover Classification Using Machine Vision".JOURNAL OF SENSORS (2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qadri, Salman]的文章
[Khan, Dost Muhammad]的文章
[Qadri, Syed Furqan]的文章
百度学术
百度学术中相似的文章
[Qadri, Salman]的文章
[Khan, Dost Muhammad]的文章
[Qadri, Syed Furqan]的文章
必应学术
必应学术中相似的文章
[Qadri, Salman]的文章
[Khan, Dost Muhammad]的文章
[Qadri, Syed Furqan]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。