Arid
DOI10.1155/2017/8750506
Twin SVM-Based Classification of Alzheimer’s Disease Using Complex Dual-Tree Wavelet Principal Coefficients and LDA
Alam, Saruar1; Kwon, Goo-Rak1; Kim, Ji-In1; Park, Chun-Su2
通讯作者Kwon, Goo-Rak
来源期刊JOURNAL OF HEALTHCARE ENGINEERING
ISSN2040-2295
EISSN2040-2309
出版年2017
英文摘要

Alzheimer’s disease (AD) is a leading cause of dementia, which causes serious health and socioeconomic problems. A progressive neurodegenerative disorder, Alzheimer’s causes the structural change in the brain, thereby affecting behavior, cognition, emotions, and memory. Numerous multivariate analysis algorithms have been used for classifying AD, distinguishing it from healthy controls (HC). Efficient early classification of AD and mild cognitive impairment (MCI) from HC is imperative as early preventive care could help to mitigate risk factors. Magnetic resonance imaging (MRI), a noninvasive biomarker, displays morphometric differences and cerebral structural changes. A novel approach for distinguishing AD from HC using dual-tree complex wavelet transforms (DTCWT), principal coefficients from the transaxial slices of MRI images, linear discriminant analysis, and twin support vector machine is proposed here. The prediction accuracy of the proposed method yielded up to 92.65 +/- 1.18 over the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, with a specificity of 92.19 +/- 1.56 and sensitivity of 93.11 +/- 1.29, and 96.68 +/- 1.44 over the Open Access Series of Imaging Studies (OASIS) dataset, with a sensitivity of 97.72 +/- 2.34 and specificity of 95.61 +/- 1.67. The accuracy, sensitivity, and specificity achieved using the proposed method are comparable or superior to those obtained by various conventional AD prediction methods.


类型Article
语种英语
国家South Korea
收录类别SCI-E
WOS记录号WOS:000408545300001
WOS关键词SUPPORT VECTOR MACHINE ; MILD COGNITIVE IMPAIRMENT ; BRAIN ; PREDICTION ; DIAGNOSIS ; SCANS ; MRI
WOS类目Health Care Sciences & Services
WOS研究方向Health Care Sciences & Services
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/200536
作者单位1.Chosun Univ, Dept Informat & Commun Engn, 375 Seosuk Dong, Gwangju 501759, South Korea;
2.Sungkyunkwan Univ, Dept Comp Educ, 05006 209 Neungjong Ro, Seoul, South Korea
推荐引用方式
GB/T 7714
Alam, Saruar,Kwon, Goo-Rak,Kim, Ji-In,等. Twin SVM-Based Classification of Alzheimer’s Disease Using Complex Dual-Tree Wavelet Principal Coefficients and LDA[J],2017.
APA Alam, Saruar,Kwon, Goo-Rak,Kim, Ji-In,&Park, Chun-Su.(2017).Twin SVM-Based Classification of Alzheimer’s Disease Using Complex Dual-Tree Wavelet Principal Coefficients and LDA.JOURNAL OF HEALTHCARE ENGINEERING.
MLA Alam, Saruar,et al."Twin SVM-Based Classification of Alzheimer’s Disease Using Complex Dual-Tree Wavelet Principal Coefficients and LDA".JOURNAL OF HEALTHCARE ENGINEERING (2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Alam, Saruar]的文章
[Kwon, Goo-Rak]的文章
[Kim, Ji-In]的文章
百度学术
百度学术中相似的文章
[Alam, Saruar]的文章
[Kwon, Goo-Rak]的文章
[Kim, Ji-In]的文章
必应学术
必应学术中相似的文章
[Alam, Saruar]的文章
[Kwon, Goo-Rak]的文章
[Kim, Ji-In]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。