Arid
DOI10.1002/2017JD026976
Evaluation of MODIS Deep Blue Aerosol Algorithm in Desert Region of East Asia: Ground Validation and Intercomparison
Tao, Minghui1; Chen, Liangfu1; Wang, Zifeng1; Wang, Jun2; Che, Huizheng3; Xu, Xiaoguang2; Wang, Wencai4; Tao, Jinhua1; Zhu, Hao1; Hou, Can1
通讯作者Chen, Liangfu ; Wang, Zifeng
来源期刊JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
ISSN2169-897X
EISSN2169-8996
出版年2017
卷号122期号:19页码:10329-10340
英文摘要

The abundant dust particles from widespread deserts in East Asia play a significant role in regional climate and air quality. In this study, we provide a comprehensive evaluation of the widely used Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue (DB) aerosol retrievals in desert regions of East Asia using ground-based observations over eight sites of the China Aerosol Remote Sensing Network (CARSNET). Different from their well-characterized performance in urban and cropland areas around the globe, DB aerosol optical depth (AOD) retrievals exhibit underestimation across the deserts in East Asia. We found that 38%-96% of satellite values fall out of an expected-error envelope of (0.05+20%AOD(CARSNET)), with the worst performance in Taklimakan Desert. In particular, DB retrievals erroneously give a nearly constant low values of 0.05 in Taklimakan Desert when AOD is below 0.5, which does not match with variation of moderate dust plumes. Comparison with Multi-angle Imaging SpectroRadiometer AOD shows that a similar underestimation is prevalent over the extensive deserts. Inversion of sky light measurements show that single scattering albedos of the yellow dust in East Asia are mostly below 0.9 at 440nm, much lower than the whiter and "redder" dust models applied in the DB algorithm. On the other hand, overestimation of surface reflectance dominantly contributes to the significant low constant AOD values in MODIS DB retrievals in Taklimakan Desert. These large biases, however, can be substantially reduced by considering unique characteristics of aerosols and surface over the arid regions in East Asia.


英文关键词aerosol deep blue MODIS validation desert MISR
类型Article
语种英语
国家Peoples R China ; USA
收录类别SCI-E
WOS记录号WOS:000413675900012
WOS关键词OPTICAL-THICKNESS ; CHINA ; DUST ; RETRIEVALS ; PRODUCTS ; MISR ; LAND ; NETWORK ; CLIMATE ; AERONET
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/200505
作者单位1.Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, Beijing, Peoples R China;
2.Univ Iowa, Dept Chem & Biochem Engn, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA;
3.Chinese Acad Meteorol Sci, Key Lab Atmospher Chem, Beijing, Peoples R China;
4.Ocean Univ China, Dept Ocean & Atmospher Sci, Qingdao, Peoples R China
推荐引用方式
GB/T 7714
Tao, Minghui,Chen, Liangfu,Wang, Zifeng,et al. Evaluation of MODIS Deep Blue Aerosol Algorithm in Desert Region of East Asia: Ground Validation and Intercomparison[J],2017,122(19):10329-10340.
APA Tao, Minghui.,Chen, Liangfu.,Wang, Zifeng.,Wang, Jun.,Che, Huizheng.,...&Hou, Can.(2017).Evaluation of MODIS Deep Blue Aerosol Algorithm in Desert Region of East Asia: Ground Validation and Intercomparison.JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,122(19),10329-10340.
MLA Tao, Minghui,et al."Evaluation of MODIS Deep Blue Aerosol Algorithm in Desert Region of East Asia: Ground Validation and Intercomparison".JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 122.19(2017):10329-10340.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tao, Minghui]的文章
[Chen, Liangfu]的文章
[Wang, Zifeng]的文章
百度学术
百度学术中相似的文章
[Tao, Minghui]的文章
[Chen, Liangfu]的文章
[Wang, Zifeng]的文章
必应学术
必应学术中相似的文章
[Tao, Minghui]的文章
[Chen, Liangfu]的文章
[Wang, Zifeng]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。