Arid
DOI10.1016/j.jaridenv.2017.05.001
Mapping Prosopis glandulosa (mesquite) in the semi-arid environment of South Africa using high-resolution WorldView-2 imagery and machine learning classifiers
Adam, Elhadi1; Mureriwa, Nyasha1; Newete, Solomon2,3
通讯作者Adam, Elhadi
来源期刊JOURNAL OF ARID ENVIRONMENTS
ISSN0140-1963
EISSN1095-922X
出版年2017
卷号145页码:43-51
英文摘要

The rapid spread of the Prosopis species has caused considerable negative impacts to biodiversity across different landscapes. The invasive taxa of Prosopis is currently rated the world’s top 100 unwanted species. However, the lack of up-to-date information about the spatial and temporal distribution of mesquite invasion has made the current control and monitoring methods unsuccessful. Consequently, detection and monitoring of Prosopis species is essential to provide reliable and accurate information about the spatial distribution and the level of invasive species dynamism into the native eco-community. This study investigates the ability of WorldView-2 imagery for mapping the invasion of P. glandulosa and coexistent indigenous species in the semi-arid region of Northern Cape Province, South Africa, using the random forest and support vector machines as classifiers. Our results show that the eight-band multi spectral WV-2 imagery is able to detect and distinguish P. glandulosa effectively from the three coexisting indigenous species of acacia, with an overall accuracy of 86% at 2 m spatial resolution. This result shows that high-accuracy can be achieved with the multispectral WV-2 sensor. This high-accuracy provides the possibility for economically-feasible mapping of the distribution and spread of invasive alien plants and assists with the restoration and conservation process. (C) 2017 Elsevier Ltd. All rights reserved.


英文关键词Prosopis glandulosa Invasive species WorldView 2 Image classification Random forest Support Vector Machine
类型Article
语种英语
国家South Africa
收录类别SCI-E
WOS记录号WOS:000406564900006
WOS关键词SUPPORT VECTOR MACHINES ; RANDOM FOREST ; HYPERSPECTRAL IMAGERY ; NATIVE PLANTS ; CLASSIFICATION ; VEGETATION ; DISCRIMINATION ; JULIFLORA ; INVASION ; AUSTRALIA
WOS类目Ecology ; Environmental Sciences
WOS研究方向Environmental Sciences & Ecology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/200127
作者单位1.Univ Witwatersrand, Sch Geog Archaeol & Environm Studies, ZA-2050 Johannesburg, South Africa;
2.ARC ISCW, Div Geoinformat Sci, Pretoria, South Africa;
3.Univ Witwatersrand, Sch Anim Plant & Environm Sci, ZA-2050 Johannesburg, South Africa
推荐引用方式
GB/T 7714
Adam, Elhadi,Mureriwa, Nyasha,Newete, Solomon. Mapping Prosopis glandulosa (mesquite) in the semi-arid environment of South Africa using high-resolution WorldView-2 imagery and machine learning classifiers[J],2017,145:43-51.
APA Adam, Elhadi,Mureriwa, Nyasha,&Newete, Solomon.(2017).Mapping Prosopis glandulosa (mesquite) in the semi-arid environment of South Africa using high-resolution WorldView-2 imagery and machine learning classifiers.JOURNAL OF ARID ENVIRONMENTS,145,43-51.
MLA Adam, Elhadi,et al."Mapping Prosopis glandulosa (mesquite) in the semi-arid environment of South Africa using high-resolution WorldView-2 imagery and machine learning classifiers".JOURNAL OF ARID ENVIRONMENTS 145(2017):43-51.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Adam, Elhadi]的文章
[Mureriwa, Nyasha]的文章
[Newete, Solomon]的文章
百度学术
百度学术中相似的文章
[Adam, Elhadi]的文章
[Mureriwa, Nyasha]的文章
[Newete, Solomon]的文章
必应学术
必应学术中相似的文章
[Adam, Elhadi]的文章
[Mureriwa, Nyasha]的文章
[Newete, Solomon]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。