Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.5194/gmd-10-2761-2017 |
Tiling soil textures for terrestrial ecosystem modelling via clustering analysis: a case study with CLASS-CTEM (version 2.1) | |
Melton, Joe R.1; Sospedra-Alfonso, Reinel2; McCusker, Kelly E.2,3,4 | |
通讯作者 | Melton, Joe R. |
来源期刊 | GEOSCIENTIFIC MODEL DEVELOPMENT
![]() |
ISSN | 1991-959X |
EISSN | 1991-9603 |
出版年 | 2017 |
卷号 | 10期号:7页码:2761-2783 |
英文摘要 | We investigate the application of clustering algorithms to represent sub-grid scale variability in soil texture for use in a global-scale terrestrial ecosystem model. Our model, the coupled Canadian Land Surface Scheme - Canadian Terrestrial Ecosystem Model (CLASS-CTEM), is typically implemented at a coarse spatial resolution (approximately 2.8 degrees x 2.8 degrees) due to its use as the land surface component of the Canadian Earth System Model (CanESM). CLASS-CTEM can, however, be run with tiling of the land surface as a means to represent sub-grid heterogeneity. We first determined that the model was sensitive to tiling of the soil textures via an idealized test case before attempting to cluster soil textures globally. To cluster a high-resolution soil texture dataset onto our coarse model grid, we use two linked algorithms - the Ordering Points to Identify the Clustering Structure (OPTICS) algorithm (Ankerst et al., 1999; Daszykowski et al., 2002) and the algorithm of (Sander et al., 2003) - to provide tiles of representative soil textures for use as CLASS-CTEM inputs. The clustering process results in, on average, about three tiles per CLASS-CTEM grid cell with most cells having four or less tiles. Results from CLASS-CTEM simulations conducted with the tiled inputs (Cluster) versus those using a simple grid-mean soil texture (Gridmean) show CLASS-CTEM, at least on a global scale, is relatively insensitive to the tiled soil textures; however, differences can be large in arid or peatland regions. The Cluster simulation has generally lower soil moisture and lower overall vegetation productivity than the Gridmean simulation except in arid regions where plant productivity increases. In these dry regions, the influence of the tiling is stronger due to the general state of vegetation moisture stress which allows a single tile, whose soil texture retains more plant-available water, to yield much higher productivity. Although the use of clustering analysis appears promising as a means to represent sub-grid heterogeneity, soil textures appear to be reasonably represented for global-scale simulations using a simple grid-mean value. |
类型 | Article |
语种 | 英语 |
国家 | Canada ; USA |
收录类别 | SCI-E |
WOS记录号 | WOS:000405652000003 |
WOS关键词 | LAND-SURFACE HETEROGENEITY ; HYDRAULIC-PROPERTIES ; VEGETATION STRUCTURE ; SUBGRID VARIABILITY ; SHORTGRASS STEPPE ; DATA SETS ; WATER ; MOISTURE ; REPRESENTATION ; CLIMATE |
WOS类目 | Geosciences, Multidisciplinary |
WOS研究方向 | Geology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/199324 |
作者单位 | 1.Environm & Climate Change Canada, Climate Res Div, Victoria, BC, Canada; 2.Environm & Climate Change Canada, Climate Res Div, Canadian Ctr Climate Modelling & Anal, Victoria, BC, Canada; 3.Univ Victoria, Sch Earth & Ocean Sci, Victoria, BC, Canada; 4.Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA |
推荐引用方式 GB/T 7714 | Melton, Joe R.,Sospedra-Alfonso, Reinel,McCusker, Kelly E.. Tiling soil textures for terrestrial ecosystem modelling via clustering analysis: a case study with CLASS-CTEM (version 2.1)[J],2017,10(7):2761-2783. |
APA | Melton, Joe R.,Sospedra-Alfonso, Reinel,&McCusker, Kelly E..(2017).Tiling soil textures for terrestrial ecosystem modelling via clustering analysis: a case study with CLASS-CTEM (version 2.1).GEOSCIENTIFIC MODEL DEVELOPMENT,10(7),2761-2783. |
MLA | Melton, Joe R.,et al."Tiling soil textures for terrestrial ecosystem modelling via clustering analysis: a case study with CLASS-CTEM (version 2.1)".GEOSCIENTIFIC MODEL DEVELOPMENT 10.7(2017):2761-2783. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。