Arid
DOI10.1016/j.geodrs.2017.07.005
Spatial prediction of major soil properties using Random Forest techniques A case study in semi-arid tropics of South India
Dharumarajan, S.1; Hegde, Rajendra1; Singh, S. K.2
通讯作者Dharumarajan, S.
来源期刊GEODERMA REGIONAL
ISSN2352-0094
出版年2017
卷号10页码:154-162
英文摘要

The purpose of the study is to map the spatial variation of major soil properties in Bukkarayasamudrum mandal of Anantapur district, India using Random Forest model. The study area is divided into different Physiographic Land Units (PLU) based on landform, landuse and slope. Random Forest model (RFM) was developed based on field survey data of 116 surface samples (0-30 cm) representing all major PLU units of the study area. RFM is neither sensitive to over fitting nor to noise features and has capacity to handle large datasets. High resolution satellite imagery (IRS LISS IV data- 3 bands), terrain attributes such as elevation, slope, aspect, topographic wetness index, topographic position index, plan & profile curvature, Multi-resolution index of valley bottom flatness and Multi-resolution ridge top flatness, Vegetation factors like NDVI, EVI and land use land cover (LULC) are used as covariates along with legacy soil data of 1: 50,000 scale. The predicted organic carbon, pH and EC ranged from 0.24-1.03%, 6.9-9.0, 0.11-0.97 dsm(-1) respectively. The model performance was evaluated based on Coefficient of determination (R-2) and Lin’s Concordance coefficient (CCC). The model performed well with R-2 and CCC values of 0.23 and 0.38 for SOC, 0.30 and 0.37 for pH, and 0.62 and 0.70 for EC respectively. Variable importance ranking of RFM model showed that EVI and NDVI are the most important predictors for organic carbon whereas drainage and NDVI for EC and pH respectively. This technique can be applied to similar landscapes with more observations to refine the spatial resolution of soil properties.


英文关键词Soil properties Digital soil mapping Random Forest model Prediction Validation
类型Article
语种英语
国家India
收录类别SCI-E
WOS记录号WOS:000457279000017
WOS类目Soil Science
WOS研究方向Agriculture
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/199221
作者单位1.ICAR Natl Bur Soil Survey & Land Use Planning, Reg Ctr, Bangalore 560024, Karnataka, India;
2.ICAR Natl Bur Soil Survey & Land Use Planning, Amaravati Rd, Nagpur 440033, Maharashtra, India
推荐引用方式
GB/T 7714
Dharumarajan, S.,Hegde, Rajendra,Singh, S. K.. Spatial prediction of major soil properties using Random Forest techniques A case study in semi-arid tropics of South India[J],2017,10:154-162.
APA Dharumarajan, S.,Hegde, Rajendra,&Singh, S. K..(2017).Spatial prediction of major soil properties using Random Forest techniques A case study in semi-arid tropics of South India.GEODERMA REGIONAL,10,154-162.
MLA Dharumarajan, S.,et al."Spatial prediction of major soil properties using Random Forest techniques A case study in semi-arid tropics of South India".GEODERMA REGIONAL 10(2017):154-162.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dharumarajan, S.]的文章
[Hegde, Rajendra]的文章
[Singh, S. K.]的文章
百度学术
百度学术中相似的文章
[Dharumarajan, S.]的文章
[Hegde, Rajendra]的文章
[Singh, S. K.]的文章
必应学术
必应学术中相似的文章
[Dharumarajan, S.]的文章
[Hegde, Rajendra]的文章
[Singh, S. K.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。