Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1080/22797254.2017.1308235 |
Towards improved land use mapping of irrigated croplands: performance assessment of different image classification algorithms and approaches | |
Basukala, Amit Kumar1; Oldenburg, Carsten1; Schellberg, Juergen1,2; Sultanov, Murodjon3; Dubovyk, Olena1 | |
通讯作者 | Basukala, Amit Kumar |
来源期刊 | EUROPEAN JOURNAL OF REMOTE SENSING
![]() |
ISSN | 2279-7254 |
出版年 | 2017 |
卷号 | 50期号:1页码:187-201 |
英文摘要 | Accurate agricultural land use (LU) map is essential formany agro-environmental applications. With advances in technology, object-based image classification and non-parametric machine learning algorithms evolved. Still, no particular method has universal applicability. This paper compares robust non-parametric machine learning algorithms, random forest (RF) and support vector machine (SVM), and a common parametric algorithm maximum likelihood (MLC) based on multiple Landsat 8 images. We have also assessed the classifier performance relative to the choice either pixel-based (PB) or field-based (FB) approach. The study area, a semi-desert irrigated region, lies in Khorezm province and Republic of Karakalpakstan in Uzbekistan. Accuracy assessment showed higher overall accuracy (OA) and kappa index (KI) of the nonparametric machine learning FB-RF and FB-SVM algorithms over the PB-RF, PB-SVM and PB-MLC algorithms. The lowest OA and KI occurred with the parametric FB-MLC. Based on the results, the FB machine learning non-parametric algorithms are recommended for mapping irrigated croplands. |
英文关键词 | Land use (LU) mapping random forest support vector machine maximum likelihood field-based Uzbekistan |
类型 | Article |
语种 | 英语 |
国家 | Germany ; Uzbekistan |
收录类别 | SCI-E |
WOS记录号 | WOS:000405204300016 |
WOS关键词 | CROP CLASSIFICATION ; UZBEKISTAN ; ACCURACY ; REQUIREMENTS ; MACHINE ; FUSION ; SPOT ; AREA |
WOS类目 | Remote Sensing |
WOS研究方向 | Remote Sensing |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/198866 |
作者单位 | 1.Univ Bonn, Ctr Remote Sensing Land Surfaces, Bonn, Germany; 2.Univ Bonn, Inst Crop Sci & Resource Conservat, Bonn, Germany; 3.Urgench State Univ, KRASS NGO, Dept Geodesy, Fac Nat Sci,Cartog,Geog, Khorezm, Uzbekistan |
推荐引用方式 GB/T 7714 | Basukala, Amit Kumar,Oldenburg, Carsten,Schellberg, Juergen,et al. Towards improved land use mapping of irrigated croplands: performance assessment of different image classification algorithms and approaches[J],2017,50(1):187-201. |
APA | Basukala, Amit Kumar,Oldenburg, Carsten,Schellberg, Juergen,Sultanov, Murodjon,&Dubovyk, Olena.(2017).Towards improved land use mapping of irrigated croplands: performance assessment of different image classification algorithms and approaches.EUROPEAN JOURNAL OF REMOTE SENSING,50(1),187-201. |
MLA | Basukala, Amit Kumar,et al."Towards improved land use mapping of irrigated croplands: performance assessment of different image classification algorithms and approaches".EUROPEAN JOURNAL OF REMOTE SENSING 50.1(2017):187-201. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。