Arid
DOI10.1080/22797254.2017.1308235
Towards improved land use mapping of irrigated croplands: performance assessment of different image classification algorithms and approaches
Basukala, Amit Kumar1; Oldenburg, Carsten1; Schellberg, Juergen1,2; Sultanov, Murodjon3; Dubovyk, Olena1
通讯作者Basukala, Amit Kumar
来源期刊EUROPEAN JOURNAL OF REMOTE SENSING
ISSN2279-7254
出版年2017
卷号50期号:1页码:187-201
英文摘要

Accurate agricultural land use (LU) map is essential formany agro-environmental applications. With advances in technology, object-based image classification and non-parametric machine learning algorithms evolved. Still, no particular method has universal applicability. This paper compares robust non-parametric machine learning algorithms, random forest (RF) and support vector machine (SVM), and a common parametric algorithm maximum likelihood (MLC) based on multiple Landsat 8 images. We have also assessed the classifier performance relative to the choice either pixel-based (PB) or field-based (FB) approach. The study area, a semi-desert irrigated region, lies in Khorezm province and Republic of Karakalpakstan in Uzbekistan. Accuracy assessment showed higher overall accuracy (OA) and kappa index (KI) of the nonparametric machine learning FB-RF and FB-SVM algorithms over the PB-RF, PB-SVM and PB-MLC algorithms. The lowest OA and KI occurred with the parametric FB-MLC. Based on the results, the FB machine learning non-parametric algorithms are recommended for mapping irrigated croplands.


英文关键词Land use (LU) mapping random forest support vector machine maximum likelihood field-based Uzbekistan
类型Article
语种英语
国家Germany ; Uzbekistan
收录类别SCI-E
WOS记录号WOS:000405204300016
WOS关键词CROP CLASSIFICATION ; UZBEKISTAN ; ACCURACY ; REQUIREMENTS ; MACHINE ; FUSION ; SPOT ; AREA
WOS类目Remote Sensing
WOS研究方向Remote Sensing
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/198866
作者单位1.Univ Bonn, Ctr Remote Sensing Land Surfaces, Bonn, Germany;
2.Univ Bonn, Inst Crop Sci & Resource Conservat, Bonn, Germany;
3.Urgench State Univ, KRASS NGO, Dept Geodesy, Fac Nat Sci,Cartog,Geog, Khorezm, Uzbekistan
推荐引用方式
GB/T 7714
Basukala, Amit Kumar,Oldenburg, Carsten,Schellberg, Juergen,et al. Towards improved land use mapping of irrigated croplands: performance assessment of different image classification algorithms and approaches[J],2017,50(1):187-201.
APA Basukala, Amit Kumar,Oldenburg, Carsten,Schellberg, Juergen,Sultanov, Murodjon,&Dubovyk, Olena.(2017).Towards improved land use mapping of irrigated croplands: performance assessment of different image classification algorithms and approaches.EUROPEAN JOURNAL OF REMOTE SENSING,50(1),187-201.
MLA Basukala, Amit Kumar,et al."Towards improved land use mapping of irrigated croplands: performance assessment of different image classification algorithms and approaches".EUROPEAN JOURNAL OF REMOTE SENSING 50.1(2017):187-201.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Basukala, Amit Kumar]的文章
[Oldenburg, Carsten]的文章
[Schellberg, Juergen]的文章
百度学术
百度学术中相似的文章
[Basukala, Amit Kumar]的文章
[Oldenburg, Carsten]的文章
[Schellberg, Juergen]的文章
必应学术
必应学术中相似的文章
[Basukala, Amit Kumar]的文章
[Oldenburg, Carsten]的文章
[Schellberg, Juergen]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。