Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1080/11956860.2017.1376262 |
Bayesian method predicts belowground biomass of natural grasslands | |
Tang, Zhuangsheng1; Deng, Lei1; An, Hui2; Shangguan, Zhouping1 | |
通讯作者 | Shangguan, Zhouping |
来源期刊 | ECOSCIENCE
![]() |
ISSN | 1195-6860 |
EISSN | 2376-7626 |
出版年 | 2017 |
卷号 | 24期号:3-4页码:127-136 |
英文摘要 | Belowground biomass accounts for most of the carbon fluxes between biosphere and atmosphere. However, the relative importance of geographical, climatic, vegetation, and soil factors to belowground biomass at the regional scale is not well understood. To improve our understanding and estimations of belowground biomass, we used multilevel regression modeling to estimate the primary productivity of natural grasslands and determine the effects of the above-mentioned factors on belowground biomass. Mean annual precipitation (MAP), longitude, soil bulk density (SB), and soil moisture content (SMC) explained 22.4% (highest density interval, HDI: 12.6-32.5%), 10.5% (HDI: 0.6-20.6%), 10.2% (HDI: 1.9-18.8%), and 13.1% (HDI: 1.5-25.2%) of the variation in regional belowground biomass, respectively. Our results clearly demonstrate that belowground biomass values of ecological communities exhibited the pattern meadow > steppe > desert steppe. MAP was the most important driver of productivity, and SMC was a goodpredictor of variations in productivity at the regional scale. Our results show that multifunctionality indices that appropriately account for the comprehensive responses of the multiple drivers of grassland ecosystems are important at the regional scale. |
英文关键词 | Bayesian analysis regression belowground biomass richness |
类型 | Article |
语种 | 英语 |
国家 | Peoples R China |
收录类别 | SCI-E |
WOS记录号 | WOS:000414401900005 |
WOS关键词 | NET PRIMARY PRODUCTIVITY ; CARBON STORAGE ; SOIL PROPERTIES ; FORAGE YIELD ; ROOT ; CLIMATE ; FOREST ; DIVERSITY ; STOCKS ; LAND |
WOS类目 | Ecology |
WOS研究方向 | Environmental Sciences & Ecology |
来源机构 | 西北农林科技大学 |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/198531 |
作者单位 | 1.Northwest A&F Univ, State Key Lab Soil Eros & Dryland Farming Loess P, Yangling, Shaanxi, Peoples R China; 2.Ningxia Univ, United Ctr Ecol Res & Bioresource Exploitat Weste, Minist Educ, Key Lab Restorat & Reconstruct Degraded Ecosyst N, Yinchuan, Peoples R China |
推荐引用方式 GB/T 7714 | Tang, Zhuangsheng,Deng, Lei,An, Hui,et al. Bayesian method predicts belowground biomass of natural grasslands[J]. 西北农林科技大学,2017,24(3-4):127-136. |
APA | Tang, Zhuangsheng,Deng, Lei,An, Hui,&Shangguan, Zhouping.(2017).Bayesian method predicts belowground biomass of natural grasslands.ECOSCIENCE,24(3-4),127-136. |
MLA | Tang, Zhuangsheng,et al."Bayesian method predicts belowground biomass of natural grasslands".ECOSCIENCE 24.3-4(2017):127-136. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。