Arid
DOI10.1080/11956860.2017.1376262
Bayesian method predicts belowground biomass of natural grasslands
Tang, Zhuangsheng1; Deng, Lei1; An, Hui2; Shangguan, Zhouping1
通讯作者Shangguan, Zhouping
来源期刊ECOSCIENCE
ISSN1195-6860
EISSN2376-7626
出版年2017
卷号24期号:3-4页码:127-136
英文摘要

Belowground biomass accounts for most of the carbon fluxes between biosphere and atmosphere. However, the relative importance of geographical, climatic, vegetation, and soil factors to belowground biomass at the regional scale is not well understood. To improve our understanding and estimations of belowground biomass, we used multilevel regression modeling to estimate the primary productivity of natural grasslands and determine the effects of the above-mentioned factors on belowground biomass. Mean annual precipitation (MAP), longitude, soil bulk density (SB), and soil moisture content (SMC) explained 22.4% (highest density interval, HDI: 12.6-32.5%), 10.5% (HDI: 0.6-20.6%), 10.2% (HDI: 1.9-18.8%), and 13.1% (HDI: 1.5-25.2%) of the variation in regional belowground biomass, respectively. Our results clearly demonstrate that belowground biomass values of ecological communities exhibited the pattern meadow > steppe > desert steppe. MAP was the most important driver of productivity, and SMC was a goodpredictor of variations in productivity at the regional scale. Our results show that multifunctionality indices that appropriately account for the comprehensive responses of the multiple drivers of grassland ecosystems are important at the regional scale.


英文关键词Bayesian analysis regression belowground biomass richness
类型Article
语种英语
国家Peoples R China
收录类别SCI-E
WOS记录号WOS:000414401900005
WOS关键词NET PRIMARY PRODUCTIVITY ; CARBON STORAGE ; SOIL PROPERTIES ; FORAGE YIELD ; ROOT ; CLIMATE ; FOREST ; DIVERSITY ; STOCKS ; LAND
WOS类目Ecology
WOS研究方向Environmental Sciences & Ecology
来源机构西北农林科技大学
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/198531
作者单位1.Northwest A&F Univ, State Key Lab Soil Eros & Dryland Farming Loess P, Yangling, Shaanxi, Peoples R China;
2.Ningxia Univ, United Ctr Ecol Res & Bioresource Exploitat Weste, Minist Educ, Key Lab Restorat & Reconstruct Degraded Ecosyst N, Yinchuan, Peoples R China
推荐引用方式
GB/T 7714
Tang, Zhuangsheng,Deng, Lei,An, Hui,et al. Bayesian method predicts belowground biomass of natural grasslands[J]. 西北农林科技大学,2017,24(3-4):127-136.
APA Tang, Zhuangsheng,Deng, Lei,An, Hui,&Shangguan, Zhouping.(2017).Bayesian method predicts belowground biomass of natural grasslands.ECOSCIENCE,24(3-4),127-136.
MLA Tang, Zhuangsheng,et al."Bayesian method predicts belowground biomass of natural grasslands".ECOSCIENCE 24.3-4(2017):127-136.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tang, Zhuangsheng]的文章
[Deng, Lei]的文章
[An, Hui]的文章
百度学术
百度学术中相似的文章
[Tang, Zhuangsheng]的文章
[Deng, Lei]的文章
[An, Hui]的文章
必应学术
必应学术中相似的文章
[Tang, Zhuangsheng]的文章
[Deng, Lei]的文章
[An, Hui]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。