Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1016/j.biombioe.2017.06.014 |
Salinity tolerance of three Salix species: Survival, biomass yield and allocation, and biochemical efficiencies | |
Major, John E.; Mosseler, Alex; Malcolm, John W.; Heartz, Shane | |
通讯作者 | Major, John E. |
来源期刊 | BIOMASS & BIOENERGY
![]() |
ISSN | 0961-9534 |
EISSN | 1873-2909 |
出版年 | 2017 |
卷号 | 105页码:10-22 |
英文摘要 | Salinity tolerance is an important adaptive trait for land reclamation, particularly after petroleum extraction from the Athabasca oil sands "gigaproject" in western Canada. We compared survival, biomass yield and allocation, and biochemical efficiency for three willow species: Salix discolor (DIS), S. eriocephala (ERI), and S. interior (INT) grown under control (CTL) and medium and high salinity treatments (MST and HST, target EC = 1.5 and 3.0 mS cm(-1), respectively). In HST, all DIS and ERI plants died, but 33% of INT plants survived. For DIS and ERI, total aboveground (AG) dry mass decreased from CTL to MST, whereas for INT, AG dry mass increased slightly in MST and also increased further in HST. Stem length was not influenced by salinity treatment; however, there was a significant treatment x species interaction for basal diameter resulting from a basal diameter decrease in DIS and ERI and increase in INT with increasing salinity. Maximum rate of carboxylation and electron transport showed equal or greater values for DIS and ERI in MST compared with CTL, but INT displayed a greater stimulation (1.3x) in the MST and HST. Across species and salinity treatments, corresponding biochemical efficiency traits showed a significant positive relationship to total AG dry mass, strongly supporting the theory of sink regulation of photosynthetic capacity. All final biomass and survival traits had significant genotype or genotype x salinity treatment interactions, but only one such effect was found for biochemical efficiency traits. The saline tolerance of INT may be due to natural selection in the arid regions of the southwest USA, where it is thought to have its evolutionary origins. Crown Copyright (C) 2017 Published by Elsevier Ltd. All rights reserved. |
英文关键词 | Biomass allocation and yield Fitness Genotypic variation Salinity tolerance Survival Willow species |
类型 | Article |
语种 | 英语 |
国家 | Canada |
收录类别 | SCI-E |
WOS记录号 | WOS:000410709100002 |
WOS关键词 | ELEVATED CO2 ; PICEA-MARIANA ; GENETIC-VARIATION ; PHOTOSYNTHESIS ; GROWTH ; RESPONSES ; WILLOWS ; CANADA ; SITES ; WATER |
WOS类目 | Agricultural Engineering ; Biotechnology & Applied Microbiology ; Energy & Fuels |
WOS研究方向 | Agriculture ; Biotechnology & Applied Microbiology ; Energy & Fuels |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/197871 |
作者单位 | Canadian Forest Serv, Nat Resources Canada, Atlantic Forestry Ctr, POB 4000, Fredericton, NB E3B 5P7, Canada |
推荐引用方式 GB/T 7714 | Major, John E.,Mosseler, Alex,Malcolm, John W.,et al. Salinity tolerance of three Salix species: Survival, biomass yield and allocation, and biochemical efficiencies[J],2017,105:10-22. |
APA | Major, John E.,Mosseler, Alex,Malcolm, John W.,&Heartz, Shane.(2017).Salinity tolerance of three Salix species: Survival, biomass yield and allocation, and biochemical efficiencies.BIOMASS & BIOENERGY,105,10-22. |
MLA | Major, John E.,et al."Salinity tolerance of three Salix species: Survival, biomass yield and allocation, and biochemical efficiencies".BIOMASS & BIOENERGY 105(2017):10-22. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。