Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1016/j.apgeochem.2017.03.001 |
Identification of blind geothermal resources in Surprise Valley, CA, using publicly available groundwater well water quality data | |
Fowler, Andrew P. G.1; Spycher, Nicolas2; Zierenberg, Robert A.1; Cantwell, Carolyn A.1 | |
通讯作者 | Fowler, Andrew P. G. |
来源期刊 | APPLIED GEOCHEMISTRY
![]() |
ISSN | 0883-2927 |
出版年 | 2017 |
卷号 | 80页码:24-48 |
英文摘要 | Geothermal resource exploration is generally limited to areas with surface expressions of thermal activity (fumaroles and hot springs), or relies on expensive geophysical exploration techniques. In this study, the hidden subsurface distribution of geothermal fluids has been identified using a free and publicly available water quality dataset from agricultural and domestic water wells in Surprise Valley, northeastern California. Thermally evolved waters in Surprise Valley have element ratios that vary in response to Ca carbonate and Mg silicate mineral precipitation, and have elevated total dissolved solids (TDS). The arid climate in Surprise Valley leads to surface water evaporation in a closed basin, producing high TDS Na-Cl-CO3-SO4 brines in three ephemeral alkali lakes and in shallow groundwater under elevated soil CO2 conditions. Evaporated fluids in Surprise Valley follow a chemical divide that leads to Ca carbonate and Mg silicate mineral precipitation. Plots of dissolved element ratios can be used to distinguish groundwater affected by evaporation from water affected by thermal water-rock interaction, however it is challenging to select components for plotting that best illustrate different fluid evolution mechanisms. Here, we use a principal component analysis of centered log-ratio transformed data, coupled with geochemical models of fluid evaporation and thermal mixing pathways, to identify components to plot that distinguish between groundwater samples influenced by evaporation from those influenced by thermal processes. We find that groundwater samples with a thermal signature come from wells that define a coherent, linear geographical distribution that closely matches the location of known and inferred faults. Modification of the general approach employed here provides promise for identifying blind geothermal resources in other locations, by applying low-cost geochemical modeling and statistical techniques to areas where large groundwater quality geochemical datasets are available. (C) 2017 Elsevier Ltd. All rights reserved. |
英文关键词 | Surprise valley Geothermal Evaporation Geochemical modeling Fluid mixing Blind geothermal resources |
类型 | Article |
语种 | 英语 |
国家 | USA |
收录类别 | SCI-E |
WOS记录号 | WOS:000400219000003 |
WOS关键词 | NORTHEASTERN CALIFORNIA ; WARNER RANGE ; STATISTICAL-ANALYSIS ; COMPOSITIONAL DATA ; HYDROGEN ISOTOPE ; SPRINGS ; BASIN ; RIVER ; LAKES |
WOS类目 | Geochemistry & Geophysics |
WOS研究方向 | Geochemistry & Geophysics |
来源机构 | University of California, Davis |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/197410 |
作者单位 | 1.Univ Calif Davis, Dept Earth & Planetary Sci, Davis, CA 95616 USA; 2.Lawrence Berkeley Natl Lab, M-S 74R316C,1 Cyclotron Rd, Berkeley, CA 94720 USA |
推荐引用方式 GB/T 7714 | Fowler, Andrew P. G.,Spycher, Nicolas,Zierenberg, Robert A.,et al. Identification of blind geothermal resources in Surprise Valley, CA, using publicly available groundwater well water quality data[J]. University of California, Davis,2017,80:24-48. |
APA | Fowler, Andrew P. G.,Spycher, Nicolas,Zierenberg, Robert A.,&Cantwell, Carolyn A..(2017).Identification of blind geothermal resources in Surprise Valley, CA, using publicly available groundwater well water quality data.APPLIED GEOCHEMISTRY,80,24-48. |
MLA | Fowler, Andrew P. G.,et al."Identification of blind geothermal resources in Surprise Valley, CA, using publicly available groundwater well water quality data".APPLIED GEOCHEMISTRY 80(2017):24-48. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。