Arid
DOI10.1007/s11269-016-1463-y
Prediction of Water Level using Monthly Lagged Data in Lake Urmia, Iran
Vaheddoost, Babak1; Aksoy, Hafzullah1; Abghari, Hirad2
通讯作者Vaheddoost, Babak
来源期刊WATER RESOURCES MANAGEMENT
ISSN0920-4741
EISSN1573-1650
出版年2016
卷号30期号:13页码:4951-4967
英文摘要

Prediction of water level fluctuations in lakes is a necessary task in hydrological and limnological studies. Lake Urmia, a hyper-saline lake in the North Western part of Iran, is dealing with a gradual atrophy. In this study, parametric and nonparametric models are used for predicting monthly water level fluctuations in Lake Urmia. Eleven previous water levels in the form of monthly lagged data are used as the known independent variables of the model while lake water level at the twelfth month is considered as the unknown dependent variable to be predicted. Parametric models used in the modelling are multi-linear regression (MLR), additive and multiplicative non-linear regression (ANLR and MNLR) and decision tree (DT) while feed forward back propagation neural network (FFBP-NN), generalized regression neural network (GR-NN) and radial basis function neural network (RBF-NN) are used to represent the non-parametric approach. Monthly water level data in Lake Urmia observed for 1966-2010 are used for the case study. Four criteria, coefficient of determination, Lin’s concordance correlation coefficient, performance index and root mean square percentage error are used in comparison of the models. The first two are considered for the success of the models while the last two for the failure. Success criteria are given a grade between 0 and 10, failure criteria receive a grade from -10 to 0. The summation of the grades is taken as the total grade of each model. It is found that regression models and FFBP-NN are superior to GR-NN, RBF-NN and DT in predicting monthly lake water level.


英文关键词Artificial neural network Decision tree Lake Urmia Lake water level Multiple regression
类型Article
语种英语
国家Turkey ; Iran
收录类别SCI-E
WOS记录号WOS:000387233400029
WOS关键词ARTIFICIAL NEURAL-NETWORK ; MONTHLY PRECIPITATION ; ARID REGIONS ; MODELS ; FLUCTUATIONS
WOS类目Engineering, Civil ; Water Resources
WOS研究方向Engineering ; Water Resources
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/196821
作者单位1.Istanbul Tech Univ, Dept Civil Engn, Istanbul, Turkey;
2.Urmia Univ, Fac Nat Resources, Dept Range & Watershed Management, Orumiyeh, Iran
推荐引用方式
GB/T 7714
Vaheddoost, Babak,Aksoy, Hafzullah,Abghari, Hirad. Prediction of Water Level using Monthly Lagged Data in Lake Urmia, Iran[J],2016,30(13):4951-4967.
APA Vaheddoost, Babak,Aksoy, Hafzullah,&Abghari, Hirad.(2016).Prediction of Water Level using Monthly Lagged Data in Lake Urmia, Iran.WATER RESOURCES MANAGEMENT,30(13),4951-4967.
MLA Vaheddoost, Babak,et al."Prediction of Water Level using Monthly Lagged Data in Lake Urmia, Iran".WATER RESOURCES MANAGEMENT 30.13(2016):4951-4967.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Vaheddoost, Babak]的文章
[Aksoy, Hafzullah]的文章
[Abghari, Hirad]的文章
百度学术
百度学术中相似的文章
[Vaheddoost, Babak]的文章
[Aksoy, Hafzullah]的文章
[Abghari, Hirad]的文章
必应学术
必应学术中相似的文章
[Vaheddoost, Babak]的文章
[Aksoy, Hafzullah]的文章
[Abghari, Hirad]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。