Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.3390/w8110504 |
Combined Effects of Mulch and Tillage on Soil Hydrothermal Conditions under Drip Irrigation in Hetao Irrigation District, China | |
Qi, Zhijuan1,2,3; Zhang, Tibin1,2; Zhou, Lifeng4; Feng, Hao1,2,4; Zhao, Ying1,2,5,6; Si, Bingcheng4,6 | |
通讯作者 | Feng, Hao ; Zhao, Ying |
来源期刊 | WATER
![]() |
ISSN | 2073-4441 |
出版年 | 2016 |
卷号 | 8期号:11 |
英文摘要 | Soil hydrothermal condition is one of the most important factors affecting crop growth in arid regions. This study aimed to investigate the effect of mulching and tillage on moisture and temperature variations in soil under drip irrigation in the arid Hetao Irrigation District, northwest China. Four treatments were included: (1) alternating ridges (40 cm wide and 20 cm high) and furrows (40 cm wide) with plots fully mulched with plastic film (RFM); (2) alternating ridges (40 cm wide and 20 cm high) and furrows (40 cm wide) with partial film mulch (only the plant rows mulched) (RPM); (3) flat tillage with plots fully mulched with plastic film (FFM); and (4) flat tillage with partial film mulch (only the plant rows mulched) (FPM). The ridge tillage and plastic film increased soil temperature and significantly conserved soil water, and thus increased the maize yield and water use efficiency (WUE). The RFM treatment had a greater effect than the RPM, FFM, and FPM treatments on the soil moisture and water storage over 0-70 cm in depth during the entire growing period in 2014 and 2015, indicating that full transparent plastic film mulch increased soil water status and promoted deep water percolation, and ridge tillage further enhanced water redistribution to deep soils. Furthermore, RFM proportionally increased soil temperature by 0.36 degrees C, 1.49 degrees C, and 1.27 degrees C above the temperatures under RPM, FPM, and FFM, respectively, in 2014 and by 1.19 degrees C, 1.62 degrees C, and 0.35 degrees C, respectively, in 2015. During the drought year of 2014, tillage influenced temperature more than mulching; however, mulching played a more important role in preserving thermal conditions than tillage during the humid year of 2015. Consequently, RFM increased the maize yield and WUE significantly. We conclude that a combined system of full plastic film mulch and ridge tillage creates beneficial soil hydrothermal conditions under drip irrigation and thus promotes the growth and performance of field crops. |
英文关键词 | mulch drip irrigation ridge tillage soil temperature soil moisture |
类型 | Article |
语种 | 英语 |
国家 | Peoples R China ; Canada |
收录类别 | SCI-E |
WOS记录号 | WOS:000389660700028 |
WOS关键词 | TRITICUM-AESTIVUM L. ; PLASTIC-FILM MULCH ; SEMIARID ENVIRONMENT ; WINTER-WHEAT ; WATER-USE ; LOESS PLATEAU ; STRAW MULCH ; NORTH CHINA ; YIELD ; TEMPERATURE |
WOS类目 | Water Resources |
WOS研究方向 | Water Resources |
来源机构 | 西北农林科技大学 |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/196779 |
作者单位 | 1.Chinese Acad Sci, Inst Soil & Water Conservat, State Key Lab Soil Eros & Dryland Farming Loess P, Yangling 712100, Peoples R China; 2.Minist ofWater Resources, Yangling 712100, Peoples R China; 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China; 4.Northwest A&F Univ, Coll Water Resources & Architectural Engn, Yangling 712100, Peoples R China; 5.Northwest A&F Univ, Minist Agr, Key Lab Plant Nutr & Agri Environm Northwest Chin, Yangling 712100, Peoples R China; 6.Univ Saskatchewan, Dept Soil Sci, Saskatoon, SK S7N 5A8, Canada |
推荐引用方式 GB/T 7714 | Qi, Zhijuan,Zhang, Tibin,Zhou, Lifeng,et al. Combined Effects of Mulch and Tillage on Soil Hydrothermal Conditions under Drip Irrigation in Hetao Irrigation District, China[J]. 西北农林科技大学,2016,8(11). |
APA | Qi, Zhijuan,Zhang, Tibin,Zhou, Lifeng,Feng, Hao,Zhao, Ying,&Si, Bingcheng.(2016).Combined Effects of Mulch and Tillage on Soil Hydrothermal Conditions under Drip Irrigation in Hetao Irrigation District, China.WATER,8(11). |
MLA | Qi, Zhijuan,et al."Combined Effects of Mulch and Tillage on Soil Hydrothermal Conditions under Drip Irrigation in Hetao Irrigation District, China".WATER 8.11(2016). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。