Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.5194/se-7-1075-2016 |
Combined deep sampling and mass-based approaches to assess soil carbon and nitrogen losses due to land-use changes in karst area of southwestern China | |
Hu, Yecui1; Du, Zhangliu2; Wang, Qibing3; Li, Guichun2 | |
通讯作者 | Du, Zhangliu |
来源期刊 | SOLID EARTH
![]() |
ISSN | 1869-9510 |
EISSN | 1869-9529 |
出版年 | 2016 |
卷号 | 7期号:4页码:1075-1084 |
英文摘要 | The conversion of natural vegetation to human-managed ecosystems, especially the agricultural systems, may decrease soil organic carbon (SOC) and total nitrogen (TN) stocks. The objective of present study was to assess SOC and TN stocks losses by combining deep sampling with mass-based calculations upon land-use changes in a typical karst area of southwestern China. We quantified the changes from native forest to grassland, secondary shrub, eucalyptus plantation, sugarcane and corn fields (both defined as croplands), on the SOC and TN stocks down to 100 cm depth using fixed-depth (FD) and equivalent soil mass (ESM) approaches. The results showed that converting forest to cropland and other types significantly led to SOC and TN losses, but the extent depended on both sampling depths and calculation methods selected (i.e., FD or ESM). On average, the shifting from native forest to cropland led to SOC losses by 19.1, 25.1, 30.6, 36.8 and 37.9% for the soil depths of 0-10, 0-20, 0-40, 0-60 and 0-100 cm, respectively, which highlighted that shallow sampling underestimated SOC losses. Moreover, the FD method underestimated SOC and TN losses for the upper 40 cm layer, but overestimated the losses in the deeper layers. We suggest that the ESM together with deep sampling should be encouraged to detect the differences in SOC stocks. In conclusion, the conversion of forest to managed systems, in particular croplands significantly decreased in SOC and TN stocks, although the effect magnitude to some extent depended on sampling depth and calculation approach selected. |
类型 | Article |
语种 | 英语 |
国家 | Peoples R China |
收录类别 | SCI-E |
WOS记录号 | WOS:000381217200006 |
WOS关键词 | ORGANIC-CARBON ; ROCKY DESERTIFICATION ; SEQUESTRATION ; STOCKS ; STORAGE ; IMPACT ; MATTER ; ACCUMULATION ; SUCCESSION ; INDICATORS |
WOS类目 | Geochemistry & Geophysics |
WOS研究方向 | Geochemistry & Geophysics |
来源机构 | 中国科学院植物研究所 |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/196503 |
作者单位 | 1.China Univ Geosci, Sch Land Sci & Tech, Beijing 100083, Peoples R China; 2.Chinese Acad Agr Sci, Inst Environm & Sustainable Dev Agr, Beijing 100081, Peoples R China; 3.Chinese Acad Sci, Inst Bot, Beijing 100093, Peoples R China |
推荐引用方式 GB/T 7714 | Hu, Yecui,Du, Zhangliu,Wang, Qibing,et al. Combined deep sampling and mass-based approaches to assess soil carbon and nitrogen losses due to land-use changes in karst area of southwestern China[J]. 中国科学院植物研究所,2016,7(4):1075-1084. |
APA | Hu, Yecui,Du, Zhangliu,Wang, Qibing,&Li, Guichun.(2016).Combined deep sampling and mass-based approaches to assess soil carbon and nitrogen losses due to land-use changes in karst area of southwestern China.SOLID EARTH,7(4),1075-1084. |
MLA | Hu, Yecui,et al."Combined deep sampling and mass-based approaches to assess soil carbon and nitrogen losses due to land-use changes in karst area of southwestern China".SOLID EARTH 7.4(2016):1075-1084. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。