Arid
DOI10.1155/2016/4589723
Intelligence in Ecology: How Internet of Things Expands Insights into the Missing CO2 Sink
Wang, Wenfeng1; Chen, Xi1; Zheng, Hongwei1; Lv, Zhihan2; Liu, Zhengjia3; Qian, Jing4; Hu, Ping1
通讯作者Chen, Xi
来源期刊SCIENTIFIC PROGRAMMING
ISSN1058-9244
EISSN1875-919X
出版年2016
英文摘要

Arid region characterizes more than 30% of the Earth’s total land surface area and the area is still increasing due to the trends of desertification, yet the extent to which it modulates the global C balance has been inadequately studied. As an emerging technology, IoT monitoring can combine researchers, instruments, and field sites and generate archival data for a better understanding of soil abiotic CO2 uptake in arid region. Images’ similarity analyses based on IoT monitoring can help ecologists to find sites where the abiotic uptake can temporally dominate and how the negative soil respiration fluxes were produced, while IoT monitoring with a set of intelligent video recognition algorithms enables ecologists to revisit these sites and the experiments details through the videos. Therefore, IoT monitoring of geospatial images, videos, and associated optimization and control algorithms should be a research priority towards expanding insights for soil abiotic CO2 uptake and a better understanding of how the uptake happens in arid region. Nevertheless, there are still considerable uncertainties and difficulties in determining the overall perspective of IoT monitoring for insights into the missing CO2 sink.


类型Article
语种英语
国家Peoples R China
收录类别SCI-E
WOS记录号WOS:000383530600001
WOS关键词CARBON-DIOXIDE ; ALKALINE SOILS ; PLASTIC MULCH ; NET ECOSYSTEM ; DESERT ; FLUX ; SALINITY ; EXCHANGE ; SEQUESTRATION ; IRRIGATION
WOS类目Computer Science, Software Engineering
WOS研究方向Computer Science
来源机构中国科学院新疆生态与地理研究所
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/196283
作者单位1.Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi 830011, Peoples R China;
2.Chinese Acad Sci, Shenzhen Inst Adv Technol, High Performance Comp Ctr, Shenzhen 518055, Peoples R China;
3.Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China;
4.Chinese Acad Sci, Shenzhen Inst Adv Technol, Ctr Geospatial Informat, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Wang, Wenfeng,Chen, Xi,Zheng, Hongwei,et al. Intelligence in Ecology: How Internet of Things Expands Insights into the Missing CO2 Sink[J]. 中国科学院新疆生态与地理研究所,2016.
APA Wang, Wenfeng.,Chen, Xi.,Zheng, Hongwei.,Lv, Zhihan.,Liu, Zhengjia.,...&Hu, Ping.(2016).Intelligence in Ecology: How Internet of Things Expands Insights into the Missing CO2 Sink.SCIENTIFIC PROGRAMMING.
MLA Wang, Wenfeng,et al."Intelligence in Ecology: How Internet of Things Expands Insights into the Missing CO2 Sink".SCIENTIFIC PROGRAMMING (2016).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Wenfeng]的文章
[Chen, Xi]的文章
[Zheng, Hongwei]的文章
百度学术
百度学术中相似的文章
[Wang, Wenfeng]的文章
[Chen, Xi]的文章
[Zheng, Hongwei]的文章
必应学术
必应学术中相似的文章
[Wang, Wenfeng]的文章
[Chen, Xi]的文章
[Zheng, Hongwei]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。