Arid
DOI10.1016/j.rse.2016.02.040
Reconstructing semi-arid wetland surface water dynamics through spectral mixture analysis of a time series of Landsat satellite images (1984-2011)
Halabisky, Meghan1; Moskal, L. Monika1; Gillespie, Alan2; Hannam, Michael3
通讯作者Halabisky, Meghan
来源期刊REMOTE SENSING OF ENVIRONMENT
ISSN0034-4257
EISSN1879-0704
出版年2016
卷号177页码:171-183
英文摘要

Wetlands are valuable ecosystems for maintaining biodiversity, but are vulnerable to climate change and land conversion. Despite their importance, wetland hydrology is poorly understood as few tools exist to monitor their hydrologic regime at a landscape scale. This is especially true when monitoring hydrologic change at scales below 30 m, the resolution of one Landsat pixel. To address this, we used spectral mixture analysis (SMA) of a time series of Landsat satellite imagery to reconstruct surface-water hydrographs for 750 wetlands in Douglas County, Washington State, USA, from 1984 to 2011. SMA estimates the fractional abundance of spectra representing physically meaningful materials, known as spectral endmembers, which comprise a mixed pixel, thus providing sub-pixel estimates of surface water extent Endmembers for water and sage steppe were selected directly from each image scene in the Landsat time series, whereas endmembers for salt and wetland vegetation were derived from a mean spectral signature of selected dates spanning the 1984-2011 timeframe. This method worked well (R-2 = 0.99) for even small wetlands (<1800 m(2)) providing a wall-to-wall dataset of reconstructed surface-water hydrographs for wetlands across our study area. We have validated this method only in semi-arid regions. Further research is necessary to extend its validity to other environments. This method can be used to better understand the role of hydrology in wetland ecosystems and as a monitoring tool to identify wetlands undergoing abnormal change. (C) 2016 Elsevier Inc. All rights reserved.


英文关键词Time series Landsat Wetlands Hydrology Hydroperiod High resolution OBIA Object-based image analysis Hydrograph Monitoring Sub-pixel
类型Article
语种英语
国家USA
收录类别SCI-E
WOS记录号WOS:000373550100015
WOS关键词FORESTED WETLANDS ; PRAIRIE WETLANDS ; CLIMATE-CHANGE ; CLASSIFICATION ; LIDAR ; HYDROPERIOD ; BATHYMETRY ; INUNDATION ; SERVICES ; SYSTEM
WOS类目Environmental Sciences ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Remote Sensing ; Imaging Science & Photographic Technology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/195998
作者单位1.Univ Washington, Sch Environm & Forest Sci, Seattle, WA 98195 USA;
2.Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA;
3.Smithsonian Environm Res Ctr, POB 28, Edgewater, MD 21037 USA
推荐引用方式
GB/T 7714
Halabisky, Meghan,Moskal, L. Monika,Gillespie, Alan,et al. Reconstructing semi-arid wetland surface water dynamics through spectral mixture analysis of a time series of Landsat satellite images (1984-2011)[J],2016,177:171-183.
APA Halabisky, Meghan,Moskal, L. Monika,Gillespie, Alan,&Hannam, Michael.(2016).Reconstructing semi-arid wetland surface water dynamics through spectral mixture analysis of a time series of Landsat satellite images (1984-2011).REMOTE SENSING OF ENVIRONMENT,177,171-183.
MLA Halabisky, Meghan,et al."Reconstructing semi-arid wetland surface water dynamics through spectral mixture analysis of a time series of Landsat satellite images (1984-2011)".REMOTE SENSING OF ENVIRONMENT 177(2016):171-183.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
Reconstructing semi-(3302KB)期刊论文出版稿开放获取CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Halabisky, Meghan]的文章
[Moskal, L. Monika]的文章
[Gillespie, Alan]的文章
百度学术
百度学术中相似的文章
[Halabisky, Meghan]的文章
[Moskal, L. Monika]的文章
[Gillespie, Alan]的文章
必应学术
必应学术中相似的文章
[Halabisky, Meghan]的文章
[Moskal, L. Monika]的文章
[Gillespie, Alan]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Reconstructing semi-arid wetland surface water dynamics through spectral mixture analysis of a time series of Landsat satellite images (1984-2011).pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。