Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.3390/rs8050384 |
Changes in Global Grassland Productivity during 1982 to 2011 Attributable to Climatic Factors | |
Gao, Qingzhu1,2; Schwartz, Mark W.3; Zhu, Wenquan4; Wan, Yunfan1,2; Qin, Xiaobo1,2; Ma, Xin1,2; Liu, Shuo1,2; Williamson, Matthew A.3; Peters, Casey B.3; Li, Yue1,2 | |
通讯作者 | Gao, Qingzhu |
来源期刊 | REMOTE SENSING
![]() |
ISSN | 2072-4292 |
出版年 | 2016 |
卷号 | 8期号:5 |
英文摘要 | Open, Grass-and Forb-Dominated (OGFD) ecosystems, including tundra, tropical grasslands and savanna, provide habitat for both wild and domesticated large ungulate herbivores. These ecosystems exist across a wide temperature gradient from the Arctic regions to the Equator, but are confined to a narrow set of moisture conditions that range from arid deserts to forest-dominated systems. Primary productivity in OGFD ecosystems appears extremely sensitive to environmental change. We compared global trends in the annual maximum and mean values of the Normalized Difference Vegetation Index (NDVI) and identified the key bioclimatic indices that controlled OGFD productivity changes in various regions for the period from 1982 to 2011. We found significantly increased or decreased annual maximum NDVI values of 36.3% and 4.6% for OGFD ecosystems, respectively. Trends in the annual mean NDVI are similar for most OGFD ecosystems and show greater area decreases and smaller area increases than trends in the annual maximum NDVI in global OGFD ecosystems during the study period. Ecosystems in which the productivity significantly increased were distributed mainly in the Arctic, mid-eastern South America, central Africa, central Eurasia and Oceania, while those with decreasing trends in productivity were mainly on the Mongolian Plateau. Temperature increases tended to improve productivity in colder OGFD ecosystems; and precipitation is positively correlated with productivity changes in grassland and savannas, but negatively correlated with changes in the Arctic tundra. Simple bioclimatic indices explain 42% to 55% of productivity changes in OGFD systems worldwide, and the main climatic predictors of productivity differed significantly between regions. In light of future climate change, the findings of this study will help support management of global OGFD ecosystems. |
英文关键词 | NDVI bioclimatic index stepwise multiple regression grassland savanna tundra |
类型 | Article |
语种 | 英语 |
国家 | Peoples R China ; USA |
收录类别 | SCI-E |
WOS记录号 | WOS:000378406400028 |
WOS关键词 | VEGETATION ; TRENDS ; VARIABILITY |
WOS类目 | Remote Sensing |
WOS研究方向 | Remote Sensing |
来源机构 | 北京师范大学 ; University of California, Davis |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/195948 |
作者单位 | 1.Chinese Acad Agr Sci, Inst Environm & Sustainable Dev Agr, Beijing 100081, Peoples R China; 2.Minist Agr, Key Lab Agroenvironm & Climate Change, Beijing 100081, Peoples R China; 3.Univ Calif Davis, John Muir Inst Environm, Davis, CA 95616 USA; 4.Beijing Normal Univ, Coll Resources Sci & Technol, Beijing 100875, Peoples R China |
推荐引用方式 GB/T 7714 | Gao, Qingzhu,Schwartz, Mark W.,Zhu, Wenquan,et al. Changes in Global Grassland Productivity during 1982 to 2011 Attributable to Climatic Factors[J]. 北京师范大学, University of California, Davis,2016,8(5). |
APA | Gao, Qingzhu.,Schwartz, Mark W..,Zhu, Wenquan.,Wan, Yunfan.,Qin, Xiaobo.,...&Li, Yue.(2016).Changes in Global Grassland Productivity during 1982 to 2011 Attributable to Climatic Factors.REMOTE SENSING,8(5). |
MLA | Gao, Qingzhu,et al."Changes in Global Grassland Productivity during 1982 to 2011 Attributable to Climatic Factors".REMOTE SENSING 8.5(2016). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。