Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1371/journal.pone.0154768 |
Regulation of Heat Exchange across the Hornbill Beak: Functional Similarities with Toucans? | |
van de Ven, T. M. F. N.1; Martin, R. O.1; Vink, T. J. F.2; McKechnie, A. E.3; Cunningham, S. J.1 | |
通讯作者 | van de Ven, T. M. F. N. |
来源期刊 | PLOS ONE
![]() |
ISSN | 1932-6203 |
出版年 | 2016 |
卷号 | 11期号:5 |
英文摘要 | Beaks are increasingly recognised as important contributors to avian thermoregulation. Several studies supporting Allen’s rule demonstrate how beak size is under strong selection related to latitude and/or air temperature (T-a). Moreover, active regulation of heat transfer from the beak has recently been demonstrated in a toucan (Ramphastos toco, Ramphastidae), with the large beak acting as an important contributor to heat dissipation. We hypothesised that hornbills (Bucerotidae) likewise use their large beaks for non-evaporative heat dissipation, and used thermal imaging to quantify heat exchange over a range of air temperatures in eighteen desert-living Southern Yellow-billed Hornbills (Tockus leucomelas). We found that hornbills dissipate heat via the beak at air temperatures between 30.7 degrees C and 41.4 degrees C. The difference between beak surface and environmental temperatures abruptly increased when air temperature was within similar to 10 degrees C below body temperature, indicating active regulation of heat loss. Maximum observed heat loss via the beak was 19.9% of total non-evaporative heat loss across the body surface. Heat loss per unit surface area via the beak more than doubled at T-a > 30.7 degrees C compared to T-a < 30.7 degrees C and at its peak dissipated 25.1 W m(-2). Maximum heat flux rate across the beak of toucans under comparable convective conditions was calculated to be as high as 61.4 W m(-2). The threshold air temperature at which toucans vasodilated their beak was lower than that of the hornbills, and thus had a larger potential for heat loss at lower air temperatures. Respiratory cooling (panting) thresholds were also lower in toucans compared to hornbills. Both beak vasodilation and panting threshold temperatures are potentially explained by differences in acclimation to environmental conditions and in the efficiency of evaporative cooling under differing environmental conditions. We speculate that non-evaporative heat dissipation may be a particularly important mechanism for animals inhabiting humid regions, such as toucans, and less critical for animals residing in more arid conditions, such as Southern Yellow-billed Hornbills. Alternatively, differences in beak morphology and hardness enforced by different diets may affect the capacity of birds to use the beak for non-evaporative heat loss. |
类型 | Article |
语种 | 英语 |
国家 | South Africa |
收录类别 | SCI-E |
WOS记录号 | WOS:000376286100029 |
WOS关键词 | BOTTLE-NOSED DOLPHINS ; BILL SIZE ; ALLENS RULE ; THERMOREGULATION ; TEMPERATURE ; EVOLUTION ; REVEALS |
WOS类目 | Multidisciplinary Sciences |
WOS研究方向 | Science & Technology - Other Topics |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/195632 |
作者单位 | 1.Univ Cape Town, Percy Fitzpatrick Inst African Ornithol, DST NRF Ctr Excellence, ZA-7701 Cape Town, South Africa; 2.Nelson Mandela Metropolitan Univ, Inst Coastal & Marine Res, Dept Bot, ZA-6031 Port Elizabeth, South Africa; 3.Univ Pretoria, Percy FitzPatrick Inst, Dept Zool & Entomol, DST NRF Ctr Excellence, ZA-0002 Pretoria, South Africa |
推荐引用方式 GB/T 7714 | van de Ven, T. M. F. N.,Martin, R. O.,Vink, T. J. F.,et al. Regulation of Heat Exchange across the Hornbill Beak: Functional Similarities with Toucans?[J],2016,11(5). |
APA | van de Ven, T. M. F. N.,Martin, R. O.,Vink, T. J. F.,McKechnie, A. E.,&Cunningham, S. J..(2016).Regulation of Heat Exchange across the Hornbill Beak: Functional Similarities with Toucans?.PLOS ONE,11(5). |
MLA | van de Ven, T. M. F. N.,et al."Regulation of Heat Exchange across the Hornbill Beak: Functional Similarities with Toucans?".PLOS ONE 11.5(2016). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。