Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1094/PDIS-12-15-1459-RE |
Systemic Hypersensitive Resistance to Turnip mosaic virus in Brassica juncea is Associated With Multiple Defense Responses, Especially Phloem Necrosis and Xylem Occlusion | |
Nyalugwe, Eviness P.1,2; Barbetti, Martin J.1,2; Clode, Peta L.3; Jones, Roger A. C.1,2,4 | |
通讯作者 | Jones, Roger A. C. |
来源期刊 | PLANT DISEASE
![]() |
ISSN | 0191-2917 |
EISSN | 1943-7692 |
出版年 | 2016 |
卷号 | 100期号:7页码:1261-1270 |
英文摘要 | Systemic hypersensitive resistance (SHR) caused by Turnip mosaic virus (TuMV) was studied by light microscopy and histochemical analysis in stem cross sections of Brassica juncea (Indian mustard) plants. Ten TuMV isolates were inoculated to leaves of susceptible line JM 06006, cv. Oasis CI, which carries TuMV systemic hypersensitivity gene TuRBJU 01, and F3 progeny plants obtained from a cross between them. Systemic mosaic (SM) symptoms were induced by all 10 isolates in plants of JM 06006, and by resistance-breaking isolate NSW-3 in all cv. Oasis CI and F3 plants. With the other nine isolates, cv. Oasis CI plants developed SHR while F3 progeny plants segregated for both phenotypes; mock-inoculated control plants never became infected. Presence of SHR did not delay systemic invasion as this commenced within 2 hours after inoculation (hai) and was almost complete by 72 hai regardless of whether plants subsequently developed SHR or SM. When stem cross sections sampled 9 to 12 days after inoculation were examined for the plant defense responses, phloem necrosis, hydrogen peroxide accumulation, and additional lignin deposition, sections from plants with SHR demonstrated all of these characteristics, but sections from plants with SM or mock-inoculation did not. Based on consolidated data from all isolates except NSW-3, stems developing SHR had significantly more occluded xylem vessels (P < 0.001) compared with stems from plants developing SM or mock-inoculated plants. Both light microscopy and histochemical tests with phloroglucinol-HCL and toluidine blue 0 indicated that the xylem occlusions could be gels. Thus, phloem necrosis, xylem occlusion, lignification, and hydrogen peroxide accumulation were all associated with the SHR in B. juncea plants carrying TuMV hypersensitivity gene TuRBJU 01. In addition, virus inclusion bodies were fewer in sections from plants with SHR. Phloem necrosis was apparently acting as the primary cause of SHR and xylem occlusion as an important secondary cause. |
类型 | Article |
语种 | 英语 |
国家 | Australia |
收录类别 | SCI-E |
WOS记录号 | WOS:000377641400001 |
WOS关键词 | CELL-DEATH ; INFECTION ; PHENOTYPES ; LESIONS ; PROTEIN ; GENE |
WOS类目 | Plant Sciences |
WOS研究方向 | Plant Sciences |
来源机构 | University of Western Australia |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/195519 |
作者单位 | 1.Univ Western Australia, Fac Sci, Sch Plant Biol, Crawley, WA 6009, Australia; 2.Univ Western Australia, Fac Sci, Inst Agr, Crawley, WA 6009, Australia; 3.Univ Western Australia, Ctr Microscopy Characterisat & Anal, Crawley, WA 6009, Australia; 4.Dept Agr & Food Western Australia, S Perth, WA 6151, Australia |
推荐引用方式 GB/T 7714 | Nyalugwe, Eviness P.,Barbetti, Martin J.,Clode, Peta L.,et al. Systemic Hypersensitive Resistance to Turnip mosaic virus in Brassica juncea is Associated With Multiple Defense Responses, Especially Phloem Necrosis and Xylem Occlusion[J]. University of Western Australia,2016,100(7):1261-1270. |
APA | Nyalugwe, Eviness P.,Barbetti, Martin J.,Clode, Peta L.,&Jones, Roger A. C..(2016).Systemic Hypersensitive Resistance to Turnip mosaic virus in Brassica juncea is Associated With Multiple Defense Responses, Especially Phloem Necrosis and Xylem Occlusion.PLANT DISEASE,100(7),1261-1270. |
MLA | Nyalugwe, Eviness P.,et al."Systemic Hypersensitive Resistance to Turnip mosaic virus in Brassica juncea is Associated With Multiple Defense Responses, Especially Phloem Necrosis and Xylem Occlusion".PLANT DISEASE 100.7(2016):1261-1270. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。