Arid
DOI10.1016/j.neuroimage.2016.01.024
Deep MRI brain extraction: A 3D convolutional neural network for skull stripping
Kleesiek, Jens1,2,3,4; Urban, Gregor1; Hubert, Alexander1; Schwarz, Daniel1; Maier-Hein, Klaus2; Bendszus, Martin1; Biller, Armin1,4
通讯作者Kleesiek, Jens
来源期刊NEUROIMAGE
ISSN1053-8119
EISSN1095-9572
出版年2016
卷号129页码:460-469
英文摘要

Brain extraction from magnetic resonance imaging (MRI) is crucial for many neuroimaging workflows. Current methods demonstrate good results on non-enhanced T1-weighted images, but struggle when confronted with other modalities and pathologically altered tissue. In this paper we present a 3D convolutional deep learning architecture to address these shortcomings. In contrast to existing methods, we are not limited to non-enhanced T1w images. When trained appropriately, our approach handles an arbitrary number of modalities including contrast-enhanced scans. Its applicability to MRI data, comprising four channels: non-enhanced and contrast-enhanced T1w, T2w and FLAIR contrasts, is demonstrated on a challenging clinical data set containing brain tumors (N = 53), where our approach significantly outperforms six commonly used tools with a mean Dice score of 95.19. Further, the proposed method at least matches state-of-the-art performance as demonstrated on three publicly available data sets: IBSR, LPBA40 and OASIS, totaling N=135 volumes. For the IBSR (96.32) and LPBA40 (96.96) data set the convolutional neuronal network (CNN) obtains the highest average Dice scores, albeit not being significantly different from the second best performing method. For the OASIS data the second best Dice (95.02) results are achieved, with no statistical difference in comparison to the best performing tool. For all data sets the highest average specificity measures are evaluated, whereas the sensitivity displays about average results. Adjusting the cut-off threshold for generating the binary masks from the CNN’s probability output can be used to increase the sensitivity of the method. Of course, this comes at the cost of a decreased specificity and has to be decided application specific. Using an optimized GPU implementation predictions can be achieved in less than one minute. The proposed method may prove useful for large-scale studies and clinical trials. (C) 2016 Elsevier Inc. All rights reserved.


英文关键词MRI Brain extraction Brain mask Skull stripping Deep learning Convolutional networks
类型Article
语种英语
国家Germany
收录类别SCI-E
WOS记录号WOS:000372745300039
WOS关键词REGISTRATION ; IMAGES ; SEGMENTATION ; VALIDATION ; ALGORITHM ; ACCURACY ; ROBUST
WOS类目Neurosciences ; Neuroimaging ; Radiology, Nuclear Medicine & Medical Imaging
WOS研究方向Neurosciences & Neurology ; Radiology, Nuclear Medicine & Medical Imaging
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/195206
作者单位1.Univ Heidelberg Hosp, MDMI Lab, Div Neuroradiol, Heidelberg, Germany;
2.German Canc Res Ctr, Jr Grp Med Image Comp, Heidelberg, Germany;
3.Heidelberg Univ HCI IWR, Heidelberg, Germany;
4.German Canc Res Ctr, Div Radiol, Heidelberg, Germany
推荐引用方式
GB/T 7714
Kleesiek, Jens,Urban, Gregor,Hubert, Alexander,et al. Deep MRI brain extraction: A 3D convolutional neural network for skull stripping[J],2016,129:460-469.
APA Kleesiek, Jens.,Urban, Gregor.,Hubert, Alexander.,Schwarz, Daniel.,Maier-Hein, Klaus.,...&Biller, Armin.(2016).Deep MRI brain extraction: A 3D convolutional neural network for skull stripping.NEUROIMAGE,129,460-469.
MLA Kleesiek, Jens,et al."Deep MRI brain extraction: A 3D convolutional neural network for skull stripping".NEUROIMAGE 129(2016):460-469.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kleesiek, Jens]的文章
[Urban, Gregor]的文章
[Hubert, Alexander]的文章
百度学术
百度学术中相似的文章
[Kleesiek, Jens]的文章
[Urban, Gregor]的文章
[Hubert, Alexander]的文章
必应学术
必应学术中相似的文章
[Kleesiek, Jens]的文章
[Urban, Gregor]的文章
[Hubert, Alexander]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。