Arid
DOI10.1016/j.media.2015.05.005
Hierarchical max-flow segmentation framework for multi-atlas segmentation with Kohonen self-organizing map based Gaussian mixture modeling
Rajchl, Martin1,2; Baxter, John S. H.1,2; McLeod, A. Jonathan1,2; Yuan, Jing1; Qiu, Wu1; Peters, Terry M.1,2; Khan, Ali R.1
通讯作者Rajchl, Martin
来源期刊MEDICAL IMAGE ANALYSIS
ISSN1361-8415
EISSN1361-8423
出版年2016
卷号27页码:45-56
英文摘要

The incorporation of intensity, spatial, and topological information into large-scale multi-region segmentation has been a topic of ongoing research in medical image analysis. Multi-region segmentation problems, such as segmentation of brain structures, pose unique challenges in image segmentation in which regions may not have a defined intensity, spatial, or topological distinction, but rely on a combination of the three. We propose a novel framework within the Advanced segmentation tools (ASETS)(2), which combines large-scale Gaussian mixture models trained via Kohonen self-organizing maps, with deformable registration, and a convex max-flow optimization algorithm incorporating region topology as a hierarchy or tree. Our framework is validated on two publicly available neuroimaging datasets, the OASIS and MRBrainSlIdatabases, against the more conventional Potts model, achieving more accurate segmentations. Each component is accelerated using general-purpose programming on graphics processing Units to ensure computational feasibility. (C) 2015 Elsevier B.V. All rights reserved.


英文关键词ASETS Multi-region segmentation Convex optimization Kohonen self-organizing map GPGPU
类型Article
语种英语
国家Canada
收录类别SCI-E
WOS记录号WOS:000366765000005
WOS关键词MAGNETIC-RESONANCE IMAGES ; MR-IMAGES ; AUTOMATIC SEGMENTATION ; GRAPH CUTS ; BRAIN ; ALGORITHM ; CLASSIFICATION ; TISSUE
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS研究方向Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/195034
作者单位1.Western Univ, Robarts Res Inst, London, ON, Canada;
2.Western Univ, Biomed Engn Grad Program, London, ON, Canada
推荐引用方式
GB/T 7714
Rajchl, Martin,Baxter, John S. H.,McLeod, A. Jonathan,et al. Hierarchical max-flow segmentation framework for multi-atlas segmentation with Kohonen self-organizing map based Gaussian mixture modeling[J],2016,27:45-56.
APA Rajchl, Martin.,Baxter, John S. H..,McLeod, A. Jonathan.,Yuan, Jing.,Qiu, Wu.,...&Khan, Ali R..(2016).Hierarchical max-flow segmentation framework for multi-atlas segmentation with Kohonen self-organizing map based Gaussian mixture modeling.MEDICAL IMAGE ANALYSIS,27,45-56.
MLA Rajchl, Martin,et al."Hierarchical max-flow segmentation framework for multi-atlas segmentation with Kohonen self-organizing map based Gaussian mixture modeling".MEDICAL IMAGE ANALYSIS 27(2016):45-56.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Rajchl, Martin]的文章
[Baxter, John S. H.]的文章
[McLeod, A. Jonathan]的文章
百度学术
百度学术中相似的文章
[Rajchl, Martin]的文章
[Baxter, John S. H.]的文章
[McLeod, A. Jonathan]的文章
必应学术
必应学术中相似的文章
[Rajchl, Martin]的文章
[Baxter, John S. H.]的文章
[McLeod, A. Jonathan]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。