Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1002/2015JF003628 |
Dryland, calcareous soils store (and lose) significant quantities of near-surface organic carbon | |
Cunliffe, Andrew M.1; Puttock, Alan K.1; Turnbull, Laura2; Wainwright, John2; Brazier, Richard E.1 | |
通讯作者 | Cunliffe, Andrew M. |
来源期刊 | JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE
![]() |
ISSN | 2169-9003 |
EISSN | 2169-9011 |
出版年 | 2016 |
卷号 | 121期号:4页码:684-702 |
英文摘要 | Semiarid ecosystems are susceptible to changes in dominant vegetation which may have significant implications for terrestrial carbon dynamics. The present study examines the distribution of organic carbon (OC) between particle size fractions in near-surface (0-0.05 m) soil and the water erosion-induced redistribution of particle-associated OC over a grass-shrub ecotone, in a semiarid landscape, subject to land degradation. Coarse (>2mm) particles have comparable average OC concentrations to the fine (<2mm) particles, accounting for similar to 24-38% of the OC stock in the near-surface soil. This may be due to aggregate stabilization by precipitated calcium carbonate in these calcareous arid soils. Critically, standard protocols assuming that coarse fraction particles contain no OC are likely to underestimate soil OC stocks substantially, especially in soils with strongly stabilized aggregates. Sediment eroded from four hillslope scale (10 x 30m) sites during rainstorm events was monitored over four annual monsoon seasons. Eroded sediment was significantly enriched in OC; enrichment increased significantly across the grass-shrub ecotone and appears to be an enduring phenomenon probably sustained through the dynamic replacement of preferentially removed organic matter. The average erosion-induced OC event yield increased sixfold across the ecotone from grass-dominated to shrub-dominated ecosystems, due to both greater erosion and greater OC enrichment. This erosional pathway is rarely considered when comparing the carbon budgets of grasslands and shrublands, yet this accelerated efflux of OC may be important for long-term carbon storage potentials of dryland ecosystems. |
类型 | Article |
语种 | 英语 |
国家 | England |
收录类别 | SCI-E |
WOS记录号 | WOS:000382579600003 |
WOS关键词 | PARTICLE-SIZE FRACTIONS ; WOODY PLANT INVASION ; SORBED CHEMICAL-TRANSPORT ; SOUTHERN NEW-MEXICO ; OVERLAND-FLOW ; EROSION PROCESSES ; ENRICHMENT RATIO ; WATER EROSION ; NUTRIENT LOSS ; LAND-USE |
WOS类目 | Geosciences, Multidisciplinary |
WOS研究方向 | Geology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/194479 |
作者单位 | 1.Univ Exeter, Geog, Exeter, Devon, England; 2.Univ Durham, Geog, Durham, England |
推荐引用方式 GB/T 7714 | Cunliffe, Andrew M.,Puttock, Alan K.,Turnbull, Laura,et al. Dryland, calcareous soils store (and lose) significant quantities of near-surface organic carbon[J],2016,121(4):684-702. |
APA | Cunliffe, Andrew M.,Puttock, Alan K.,Turnbull, Laura,Wainwright, John,&Brazier, Richard E..(2016).Dryland, calcareous soils store (and lose) significant quantities of near-surface organic carbon.JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE,121(4),684-702. |
MLA | Cunliffe, Andrew M.,et al."Dryland, calcareous soils store (and lose) significant quantities of near-surface organic carbon".JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE 121.4(2016):684-702. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。