Arid
DOI10.1080/02626667.2015.1085991
Pre-processing of data-driven river flow forecasting models by singular value decomposition (SVD) technique
Chitsaz, Nastaran1; Azarnivand, Ali2; Araghinejad, Shahab2
通讯作者Chitsaz, Nastaran
来源期刊HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES
ISSN0262-6667
EISSN2150-3435
出版年2016
卷号61期号:12页码:2164-2178
英文摘要

An appropriate streamflow forecasting method is a prerequisite for implementation of efficient water resources management in the water-limited, arid regions that occupy much of Iran. In the current research, monthly streamflow forecasting was combined with three data-driven methods based on large input datasets involving 11 precipitation stations, a natural streamflow, and four climate indices through a long period. The major challenges of rainfall-runoff modelling are generally attributed to complex interacting processes, the large number of variables, and strong nonlinearity. The sensitivity of data-driven methods to the dimension of input/output datasets would be another challenge, so large datasets should be compressed into independently standardized principal components. In this study, three pre-processing techniques were applied: singular value decomposition (SVD) provided more efficient forecasts in comparison to principal component analysis (PCA) and average values of inputs in all networks. Among the data-driven methods, the multi-layer perceptron (MLP) with 1-month lag-time outperformed radial basis and fuzzy-based networks. In general, an increase in monthly lag-time of streamflow forecasting resulted in a decline in forecasting accuracy. The results reveal that SVD was highly effective in pre-processing of data-driven evaluations.


英文关键词river flow forecasting data-driven models pre-processing singular value decomposition (SVD) large-scale atmospheric circulation
类型Article
语种英语
国家Iran
收录类别SCI-E
WOS记录号WOS:000382256600002
WOS关键词ARTIFICIAL NEURAL-NETWORK ; FUZZY INFERENCE SYSTEM ; SEA-SURFACE TEMPERATURE ; TIME-SERIES ; INTELLIGENCE METHODS ; ANFIS MODELS ; RAINFALL ; PREDICTION ; PRECIPITATION ; OSCILLATION
WOS类目Water Resources
WOS研究方向Water Resources
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/193485
作者单位1.Univ Tehran, Dept Irrigat & Drainage Engn, Tehran, Iran;
2.Univ Tehran, Dept Irrigat & Reclamat Engn, Karaj, Iran
推荐引用方式
GB/T 7714
Chitsaz, Nastaran,Azarnivand, Ali,Araghinejad, Shahab. Pre-processing of data-driven river flow forecasting models by singular value decomposition (SVD) technique[J],2016,61(12):2164-2178.
APA Chitsaz, Nastaran,Azarnivand, Ali,&Araghinejad, Shahab.(2016).Pre-processing of data-driven river flow forecasting models by singular value decomposition (SVD) technique.HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES,61(12),2164-2178.
MLA Chitsaz, Nastaran,et al."Pre-processing of data-driven river flow forecasting models by singular value decomposition (SVD) technique".HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES 61.12(2016):2164-2178.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chitsaz, Nastaran]的文章
[Azarnivand, Ali]的文章
[Araghinejad, Shahab]的文章
百度学术
百度学术中相似的文章
[Chitsaz, Nastaran]的文章
[Azarnivand, Ali]的文章
[Araghinejad, Shahab]的文章
必应学术
必应学术中相似的文章
[Chitsaz, Nastaran]的文章
[Azarnivand, Ali]的文章
[Araghinejad, Shahab]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。