Arid
DOI10.1130/B31356.1
Climate-change versus landslide origin of fill terraces in a rapidly eroding bedrock landscape: San Gabriel River, California
Scherler, Dirk1,2,3; Lamb, Michael P.1; Rhodes, Edward J.4,5; Avouac, Jean-Philippe1
通讯作者Scherler, Dirk
来源期刊GEOLOGICAL SOCIETY OF AMERICA BULLETIN
ISSN0016-7606
EISSN1943-2674
出版年2016
卷号128期号:7-8页码:1228-1248
英文摘要

Fill terraces along rivers represent the legacy of aggradation periods that are most commonly attributed to climate change. In the North Fork of the San Gabriel River, an arid bedrock landscape in the San Gabriel Mountains, California, a series of prominent fill terraces was previously related to climate-change-induced pulses of hillslope sediment supply that temporarily and repeatedly overwhelmed river transport capacity during the Quaternary. Based on field observations, digital topographic analysis, and dating of Quaternary deposits, we suggest instead that valley aggradation was spatially confined to the North Fork San Gabriel Canyon and was a consequence of the sudden supply of unconsolidated material to upstream reaches by one of the largest known landslides in the San Gabriel Mountains. New Be-10-derived surface exposure ages from the landslide deposits, previously assumed to be early to middle Pleistocene in age, indicate at least three Holocene events at ca. 8-9 ka, ca. 4-5 ka, and ca. 0.5-1 ka. The oldest and presumably most extensive landslide predates the valley aggradation period, which is constrained by existing C-14 ages and new luminescence ages to ca. 7-8 ka. The spatial distribution, morphology, and sedimentology of the river terraces are consistent with deposition from far-traveling debris flows that originated within, and mined, the landslide deposits. Valley aggradation in the North Fork San Gabriel Canyon therefore resulted from locally enhanced sediment supply that temporarily overwhelmed river transport capacity, but the lack of similar deposits in other parts of the San Gabriel Mountains argues against a regional climatic signal. Our study highlights the potential for valley aggradation by debris flows in arid bedrock landscapes downstream of landslides that occupy headwater areas.


类型Article
语种英语
国家USA ; Germany ; England
收录类别SCI-E
WOS记录号WOS:000378636400011
WOS关键词ANDREAS FAULT ; SOUTHERN CALIFORNIA ; EROSION RATES ; DEBRIS FLOWS ; SLIP-RATE ; TRANSVERSE RANGES ; ALLUVIAL-FAN ; CAJON-PASS ; SEDIMENT ; HOLOCENE
WOS类目Geosciences, Multidisciplinary
WOS研究方向Geology
来源机构University of California, Los Angeles
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/193220
作者单位1.CALTECH, Div Geol & Planetary Sci, 1200 East Calif Blvd, Pasadena, CA 91125 USA;
2.GFZ German Res Ctr Geosci, D-14473 Potsdam, Germany;
3.Free Univ Berlin, Inst Geol Sci, Malteserstr 74-100, D-12249 Berlin, Germany;
4.Univ Sheffield, Dept Geog, Winter St, Sheffield S10 2TN, S Yorkshire, England;
5.Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, 595 Charles Young Dr East, Los Angeles, CA 90095 USA
推荐引用方式
GB/T 7714
Scherler, Dirk,Lamb, Michael P.,Rhodes, Edward J.,et al. Climate-change versus landslide origin of fill terraces in a rapidly eroding bedrock landscape: San Gabriel River, California[J]. University of California, Los Angeles,2016,128(7-8):1228-1248.
APA Scherler, Dirk,Lamb, Michael P.,Rhodes, Edward J.,&Avouac, Jean-Philippe.(2016).Climate-change versus landslide origin of fill terraces in a rapidly eroding bedrock landscape: San Gabriel River, California.GEOLOGICAL SOCIETY OF AMERICA BULLETIN,128(7-8),1228-1248.
MLA Scherler, Dirk,et al."Climate-change versus landslide origin of fill terraces in a rapidly eroding bedrock landscape: San Gabriel River, California".GEOLOGICAL SOCIETY OF AMERICA BULLETIN 128.7-8(2016):1228-1248.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Scherler, Dirk]的文章
[Lamb, Michael P.]的文章
[Rhodes, Edward J.]的文章
百度学术
百度学术中相似的文章
[Scherler, Dirk]的文章
[Lamb, Michael P.]的文章
[Rhodes, Edward J.]的文章
必应学术
必应学术中相似的文章
[Scherler, Dirk]的文章
[Lamb, Michael P.]的文章
[Rhodes, Edward J.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。