Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1016/j.gca.2016.06.011 |
Evolution of chemical and isotopic composition of inorganic carbon in a complex semi-arid zone environment: Consequences for groundwater dating using radiocarbon | |
Meredith, K. T.1; Han, L. F.2; Hollins, S. E.1; Cendon, D. I.1; Jacobsen, G. E.1; Baker, A.3 | |
通讯作者 | Meredith, K. T. |
来源期刊 | GEOCHIMICA ET COSMOCHIMICA ACTA
![]() |
ISSN | 0016-7037 |
EISSN | 1872-9533 |
出版年 | 2016 |
卷号 | 188页码:352-367 |
英文摘要 | Estimating groundwater age is important for any groundwater resource assessment and radiocarbon (C-14) dating of dissolved inorganic carbon (DIC) can provide this information. In semi-arid zone (i.e. water-limited environments), there are a multitude of reasons why C-14 dating of groundwater and traditional correction models may not be directly transferable. Some include; (1) the complex hydrological responses of these systems that lead to a mixture of different ages in the aquifer(s), (2) the varied sources, origins and ages of organic matter in the unsaturated zone and (3) high evaporation rates. These all influence the evolution of DIC and are not easily accounted for in traditional correction models. In this study, we determined carbon isotope data for; DIC in water, carbonate minerals in the sediments, sediment organic matter, soil gas CO2 from the unsaturated zone, and vegetation samples. The samples were collected after an extended drought, and again after a flood event, to capture the evolution of DIC after varying hydrological regimes. A graphical method (Han et al., 2012) was applied for interpretation of the carbon geochemical and isotopic data. Simple forward mass-balance modelling was carried out on key geochemical processes involving carbon and agreed well with observed data. High values of DIC and delta C-13(DIC), and low C-14(DIC) could not be explained by a simple carbonate mineral-CO2 gas dissolution process. Instead it is suggested that during extended drought, water-sediment interaction leads to ion exchange processes within the top similar to 10-20 m of the aquifer which promotes greater calcite dissolution in saline groundwater. This process was found to contribute more than half of the DIC, which is from a mostly ’dead’ carbon source. DIC is also influenced by carbon exchange between DIC in water and carbonate minerals found in the top 2 m of the unsaturated zone. This process occurs because of repeated dissolution/precipitation of carbonate that is dependent on the water salinity driven by drought and periodic flooding conditions. This study shows that although C-14 cannot be directly applied as a dating tool in some circumstances, carbon geochemical/isotopic data can be useful in hydrological investigations related to identifying groundwater sources, mixing relations, recharge processes, geochemical evolution, and interaction with surface water. Crown Copyright (C) 2016 Published by Elsevier Ltd. All rights reserved. |
英文关键词 | Radiocarbon Carbon isotopes Darling River Groundwater CO2(g) Unsaturated zone Water-sediment reactions |
类型 | Article |
语种 | 英语 |
国家 | Australia ; Peoples R China |
收录类别 | SCI-E |
WOS记录号 | WOS:000380752700020 |
WOS关键词 | ORGANIC-MATTER ; MASS-TRANSFER ; C-14 ACTIVITY ; EXCHANGE ; RECHARGE ; SYSTEM ; DIFFUSION ; MODELS ; RIVER ; AGES |
WOS类目 | Geochemistry & Geophysics |
WOS研究方向 | Geochemistry & Geophysics |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/193169 |
作者单位 | 1.ANSTO, Nucl Sci & Technol, Environm, New Illawarra Rd, Lucas Heights, NSW 2234, Australia; 2.Nanjing Hydraul Res Inst, Hydrol & Water Resources Dept, Guangzhou Rd 223,POB 210029, Nanjing, Jiangsu, Peoples R China; 3.Univ New South Wales, Connected Waters Initiat Res Ctr, Sydney, NSW 2052, Australia |
推荐引用方式 GB/T 7714 | Meredith, K. T.,Han, L. F.,Hollins, S. E.,et al. Evolution of chemical and isotopic composition of inorganic carbon in a complex semi-arid zone environment: Consequences for groundwater dating using radiocarbon[J],2016,188:352-367. |
APA | Meredith, K. T.,Han, L. F.,Hollins, S. E.,Cendon, D. I.,Jacobsen, G. E.,&Baker, A..(2016).Evolution of chemical and isotopic composition of inorganic carbon in a complex semi-arid zone environment: Consequences for groundwater dating using radiocarbon.GEOCHIMICA ET COSMOCHIMICA ACTA,188,352-367. |
MLA | Meredith, K. T.,et al."Evolution of chemical and isotopic composition of inorganic carbon in a complex semi-arid zone environment: Consequences for groundwater dating using radiocarbon".GEOCHIMICA ET COSMOCHIMICA ACTA 188(2016):352-367. |
条目包含的文件 | ||||||
文件名称/大小 | 资源类型 | 版本类型 | 开放类型 | 使用许可 | ||
Evolution of chemica(2693KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。