Arid
DOI10.1016/j.coldregions.2015.11.004
Comparison of artificial neural network and decision tree models in estimating spatial distribution of snow depth in a semi-arid region of Iran
Gharaei-Manesh, Samaneh1; Fathzadeh, Ali2; Taghizadeh-Mehrjardi, Ruhollah
通讯作者Fathzadeh, Ali
来源期刊COLD REGIONS SCIENCE AND TECHNOLOGY
ISSN0165-232X
EISSN1872-7441
出版年2016
卷号122页码:26-35
英文摘要

There is no doubt that snow cover plays an important role in the hydrological cycle of mountainous basins. Therefore, it is essential to measure snow parameters such as snow depth and snow water equivalent in these areas. The aim of this study is to estimate the snow depth from terrain parameters in the Sakhvid Basin, Iran using artificial neural networks (ANNs) and M5 algorithm of decision tree. For this purpose, snow depths were measured in 206 sites based on systematic network. Furthermore, 30 terrain parameters were extracted from a digital elevation model (DEM) of the basin. The results indicated that the decision tree model is the most suitable method to estimate snow depth in the study area with a Nash-Sutcliffe Efficiency (E-ns) of 0.80, followed by ANNs with an E-ns of 0.73. Moreover, the most significant parameters in the M5 decision tree algorithm are: channel network base level, stream power, wetness index and height. (C) 2015 Elsevier B.V. All rights reserved.


英文关键词Snow depth Cubist Decision tree Terrain parameters Artificial neural networks
类型Article
语种英语
国家Iran
收录类别SCI-E
WOS记录号WOS:000368203900004
WOS关键词CLIMATE-CHANGE ; RUNOFF ; BASIN ; VARIABILITY ; HYDROLOGY ; IMPACT ; CHINA ; SCALE ; RIVER ; FIELD
WOS类目Engineering, Environmental ; Engineering, Civil ; Geosciences, Multidisciplinary
WOS研究方向Engineering ; Geology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/192119
作者单位1.Yazd Univ, Nat Resources Fac, Yazd, Iran;
2.Ardakan Univ, Coll Agr & Nat Resources, Ardakan, Iran
推荐引用方式
GB/T 7714
Gharaei-Manesh, Samaneh,Fathzadeh, Ali,Taghizadeh-Mehrjardi, Ruhollah. Comparison of artificial neural network and decision tree models in estimating spatial distribution of snow depth in a semi-arid region of Iran[J],2016,122:26-35.
APA Gharaei-Manesh, Samaneh,Fathzadeh, Ali,&Taghizadeh-Mehrjardi, Ruhollah.(2016).Comparison of artificial neural network and decision tree models in estimating spatial distribution of snow depth in a semi-arid region of Iran.COLD REGIONS SCIENCE AND TECHNOLOGY,122,26-35.
MLA Gharaei-Manesh, Samaneh,et al."Comparison of artificial neural network and decision tree models in estimating spatial distribution of snow depth in a semi-arid region of Iran".COLD REGIONS SCIENCE AND TECHNOLOGY 122(2016):26-35.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
Comparison of artifi(4305KB)期刊论文出版稿开放获取CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gharaei-Manesh, Samaneh]的文章
[Fathzadeh, Ali]的文章
[Taghizadeh-Mehrjardi, Ruhollah]的文章
百度学术
百度学术中相似的文章
[Gharaei-Manesh, Samaneh]的文章
[Fathzadeh, Ali]的文章
[Taghizadeh-Mehrjardi, Ruhollah]的文章
必应学术
必应学术中相似的文章
[Gharaei-Manesh, Samaneh]的文章
[Fathzadeh, Ali]的文章
[Taghizadeh-Mehrjardi, Ruhollah]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Comparison of artificial neural network and decision tree models in estimating spatial distribution of snow depth in a semi-arid region of Iran.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。