Arid
DOI10.1007/s13143-016-0026-8
Modelling spatial, altitudinal and temporal variability of annual precipitation in mountainous regions: The case of the Middle Zagros, Iran
Saeidabadi, Rashid1; Najafi, Mohammed S.2; Roshan, GholamReza3; Fitchett, Jennifer M.4,5; Abkharabat, Shoaieb2
通讯作者Najafi, Mohammed S.
来源期刊ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES
ISSN1976-7633
EISSN1976-7951
出版年2016
卷号52期号:5页码:437-449
英文摘要

Relationships between precipitation and elevation are difficult to model for mountainous regions, due to complexities in topography and moisture sources. Attempts to model these relationships need to be tested against long-term location specific meteorological data, and hence require a case-study approach. This study uses artificial neural networks to model these relationships for the Middle of Zagros region, in semi-arid western Iran. Precipitation data for the region were collected for 1995-2007. Annual precipitation was designated as the target variable for the network, which additionally included variables significantly related to precipitation for the region, including longitude, latitude, elevation, slope, distance from the ridge, and relative distance from moisture. Long-term changes in annual precipitation for the region are investigated for 1961-2010. The artificial neural network (ANN) model explains 76% of the spatial variability of precipitation in the Middle Zagros. Precipitation predominantly increases with elevation on the windward slope, to a maximum height of 2500 m.asl, and thereafter either remains constant or decreases slowly to the ridge. Precipitation in the region has decreased significantly over the study period, with fluctuations driven by AO, NAO, ENSO and variability in the strength of pressure centers. Spectral analysis reveals significant oscillations of 2-4 and 5 yr periods, which correspond temporally with cycles in macro-scale circulation, ENSO and the Mediterranean Low pressure.


英文关键词Precipitation artificial neural networks spectral analysis trend analysis middle zagros
类型Article
语种英语
国家Iran ; South Africa
收录类别SCI-E
WOS记录号WOS:000389904700002
WOS关键词ARTIFICIAL NEURAL-NETWORK ; RIVER-BASIN ; TIME-SERIES ; RAINFALL ; CHINA ; CLIMATE ; TRENDS ; OSCILLATION ; TERRAIN
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/191526
作者单位1.Urmia Univ, Dept Geog, Orumiyeh, Iran;
2.Univ Tabriz, Fac Geog & Planning, Dept Climatol, Tabriz, Iran;
3.Golestan Univ, Dept Geog, Gorgan, Iran;
4.Univ Witwatersrand, Sch Geog Archaeol & Environm Studies, Johannesburg, South Africa;
5.Univ Witwatersrand, Evolutionary Studies Inst, Johannesburg, South Africa
推荐引用方式
GB/T 7714
Saeidabadi, Rashid,Najafi, Mohammed S.,Roshan, GholamReza,et al. Modelling spatial, altitudinal and temporal variability of annual precipitation in mountainous regions: The case of the Middle Zagros, Iran[J],2016,52(5):437-449.
APA Saeidabadi, Rashid,Najafi, Mohammed S.,Roshan, GholamReza,Fitchett, Jennifer M.,&Abkharabat, Shoaieb.(2016).Modelling spatial, altitudinal and temporal variability of annual precipitation in mountainous regions: The case of the Middle Zagros, Iran.ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES,52(5),437-449.
MLA Saeidabadi, Rashid,et al."Modelling spatial, altitudinal and temporal variability of annual precipitation in mountainous regions: The case of the Middle Zagros, Iran".ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES 52.5(2016):437-449.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Saeidabadi, Rashid]的文章
[Najafi, Mohammed S.]的文章
[Roshan, GholamReza]的文章
百度学术
百度学术中相似的文章
[Saeidabadi, Rashid]的文章
[Najafi, Mohammed S.]的文章
[Roshan, GholamReza]的文章
必应学术
必应学术中相似的文章
[Saeidabadi, Rashid]的文章
[Najafi, Mohammed S.]的文章
[Roshan, GholamReza]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。