Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1007/s12517-016-2791-1 |
PCA and SVM as geo-computational methods for geological mapping in the southern of Tunisia, using ASTER remote sensing data set | |
Gasmi, Anis1,2; Gomez, Cecile3; Zouari, Hedi2; Masse, Antoine4; Ducrot, Danielle4 | |
通讯作者 | Gasmi, Anis |
来源期刊 | ARABIAN JOURNAL OF GEOSCIENCES
![]() |
ISSN | 1866-7511 |
EISSN | 1866-7538 |
出版年 | 2016 |
卷号 | 9期号:20 |
英文摘要 | The purpose of this study was to examine the efficiency of Advanced Space Borne Thermal Emission and Reflection Radiometer (ASTER) data in the discrimination of geological formations and the generation of geological map in the northern margin of the Tunisian desert. The nine ASTER bands covering the visible (VIS), near-infrared (NIR) and short-wave infrared (SWIR) spectral regions (wavelength range of 400-2500 nm) have been treated and analyzed. As a first step of data processing, crosstalk correction, resampling, orthorectification, atmospheric correction, and radiometric normalization have been applied to the ASTER radiance data. Then, to decrease the redundancy information in highly correlated bands, the principal component analysis (PCA) has been applied on the nine ASTER bands. The results of PCA allow the validation and the rectification of the lithological boundaries already published on the geologic map, and gives a new information for identifying new lithological units corresponding to superficial formations previously undiscovered. The application of a supervised classification on the principal components image using a support vector machine (SVM) algorithm shows good correlation with the reference geologic map. The overall classification accuracy is 73 % and the kappa coefficient equals to 0.71. The processing of ASTER remote sensing data set by PCA and SVM can be employed as an effective tool for geological mapping in arid regions. |
英文关键词 | PCA SVM ASTER Geological mapping Tunisia |
类型 | Article |
语种 | 英语 |
国家 | Tunisia ; France |
收录类别 | SCI-E |
WOS记录号 | WOS:000391424900016 |
WOS关键词 | SPACEBORNE THERMAL EMISSION ; REFLECTION RADIOMETER ASTER ; OPHIOLITE COMPLEX ; MU-M ; CLASSIFICATION ; MINERALS ; SPECTRA ; ROCKS |
WOS类目 | Geosciences, Multidisciplinary |
WOS研究方向 | Geology |
来源机构 | French National Research Institute for Sustainable Development |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/191478 |
作者单位 | 1.Univ Tunis El Manar, FST, Campus Univ, Tunis 2092, Tunisia; 2.Ctr Rech & Technol Eaux CERTE, Lab Traitement Eaux Nat LabTEN, Technopole Borj Cedria,BP 273, Soliman 8020, Tunisia; 3.UMR LISAH INRA IRD SupAgro, IRD, Lab Etude Interact Sols Agrosyst Hydrosyst, F-34060 Montpellier, France; 4.Ctr Etud Spatiales Biosphere CESBIO, 18 Ave E Belin,Bpi 2801, F-31401 Toulouse 9, France |
推荐引用方式 GB/T 7714 | Gasmi, Anis,Gomez, Cecile,Zouari, Hedi,et al. PCA and SVM as geo-computational methods for geological mapping in the southern of Tunisia, using ASTER remote sensing data set[J]. French National Research Institute for Sustainable Development,2016,9(20). |
APA | Gasmi, Anis,Gomez, Cecile,Zouari, Hedi,Masse, Antoine,&Ducrot, Danielle.(2016).PCA and SVM as geo-computational methods for geological mapping in the southern of Tunisia, using ASTER remote sensing data set.ARABIAN JOURNAL OF GEOSCIENCES,9(20). |
MLA | Gasmi, Anis,et al."PCA and SVM as geo-computational methods for geological mapping in the southern of Tunisia, using ASTER remote sensing data set".ARABIAN JOURNAL OF GEOSCIENCES 9.20(2016). |
条目包含的文件 | ||||||
文件名称/大小 | 资源类型 | 版本类型 | 开放类型 | 使用许可 | ||
PCA and SVM as geo-c(8481KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。