Arid
DOI10.1007/s12517-016-2791-1
PCA and SVM as geo-computational methods for geological mapping in the southern of Tunisia, using ASTER remote sensing data set
Gasmi, Anis1,2; Gomez, Cecile3; Zouari, Hedi2; Masse, Antoine4; Ducrot, Danielle4
通讯作者Gasmi, Anis
来源期刊ARABIAN JOURNAL OF GEOSCIENCES
ISSN1866-7511
EISSN1866-7538
出版年2016
卷号9期号:20
英文摘要

The purpose of this study was to examine the efficiency of Advanced Space Borne Thermal Emission and Reflection Radiometer (ASTER) data in the discrimination of geological formations and the generation of geological map in the northern margin of the Tunisian desert. The nine ASTER bands covering the visible (VIS), near-infrared (NIR) and short-wave infrared (SWIR) spectral regions (wavelength range of 400-2500 nm) have been treated and analyzed. As a first step of data processing, crosstalk correction, resampling, orthorectification, atmospheric correction, and radiometric normalization have been applied to the ASTER radiance data. Then, to decrease the redundancy information in highly correlated bands, the principal component analysis (PCA) has been applied on the nine ASTER bands. The results of PCA allow the validation and the rectification of the lithological boundaries already published on the geologic map, and gives a new information for identifying new lithological units corresponding to superficial formations previously undiscovered. The application of a supervised classification on the principal components image using a support vector machine (SVM) algorithm shows good correlation with the reference geologic map. The overall classification accuracy is 73 % and the kappa coefficient equals to 0.71. The processing of ASTER remote sensing data set by PCA and SVM can be employed as an effective tool for geological mapping in arid regions.


英文关键词PCA SVM ASTER Geological mapping Tunisia
类型Article
语种英语
国家Tunisia ; France
收录类别SCI-E
WOS记录号WOS:000391424900016
WOS关键词SPACEBORNE THERMAL EMISSION ; REFLECTION RADIOMETER ASTER ; OPHIOLITE COMPLEX ; MU-M ; CLASSIFICATION ; MINERALS ; SPECTRA ; ROCKS
WOS类目Geosciences, Multidisciplinary
WOS研究方向Geology
来源机构French National Research Institute for Sustainable Development
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/191478
作者单位1.Univ Tunis El Manar, FST, Campus Univ, Tunis 2092, Tunisia;
2.Ctr Rech & Technol Eaux CERTE, Lab Traitement Eaux Nat LabTEN, Technopole Borj Cedria,BP 273, Soliman 8020, Tunisia;
3.UMR LISAH INRA IRD SupAgro, IRD, Lab Etude Interact Sols Agrosyst Hydrosyst, F-34060 Montpellier, France;
4.Ctr Etud Spatiales Biosphere CESBIO, 18 Ave E Belin,Bpi 2801, F-31401 Toulouse 9, France
推荐引用方式
GB/T 7714
Gasmi, Anis,Gomez, Cecile,Zouari, Hedi,et al. PCA and SVM as geo-computational methods for geological mapping in the southern of Tunisia, using ASTER remote sensing data set[J]. French National Research Institute for Sustainable Development,2016,9(20).
APA Gasmi, Anis,Gomez, Cecile,Zouari, Hedi,Masse, Antoine,&Ducrot, Danielle.(2016).PCA and SVM as geo-computational methods for geological mapping in the southern of Tunisia, using ASTER remote sensing data set.ARABIAN JOURNAL OF GEOSCIENCES,9(20).
MLA Gasmi, Anis,et al."PCA and SVM as geo-computational methods for geological mapping in the southern of Tunisia, using ASTER remote sensing data set".ARABIAN JOURNAL OF GEOSCIENCES 9.20(2016).
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
PCA and SVM as geo-c(8481KB)期刊论文出版稿开放获取CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gasmi, Anis]的文章
[Gomez, Cecile]的文章
[Zouari, Hedi]的文章
百度学术
百度学术中相似的文章
[Gasmi, Anis]的文章
[Gomez, Cecile]的文章
[Zouari, Hedi]的文章
必应学术
必应学术中相似的文章
[Gasmi, Anis]的文章
[Gomez, Cecile]的文章
[Zouari, Hedi]的文章
相关权益政策
暂无数据
收藏/分享
文件名: PCA and SVM as geo-computational methods for geological mapping in the southern of Tunisia, using ASTER remote sensing data set.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。