Arid
DOI10.1007/s12517-016-2388-8
Soil temperature estimation using an artificial neural network and co-active neuro-fuzzy inference system in two different climates
Abyaneh, Hamid Zare1; Varkeshi, Maryam Bayat2; Golmohammadi, Golmar3; Mohammadi, Kourosh3
通讯作者Abyaneh, Hamid Zare
来源期刊ARABIAN JOURNAL OF GEOSCIENCES
ISSN1866-7511
EISSN1866-7538
出版年2016
卷号9期号:5
英文摘要

Soil temperature is an important meteorological parameter which determines the rates of physical, chemical, and biological reactions in the soil. However, measured values are very sparse in space and time and often not available for a given site. In this study, two intelligent neural models including artificial neural networks (ANNs) and co-active neuro-fuzzy inference system (CANFIS) were used for the estimation of soil temperatures at six depths (5, 10, 20, 30, 50, and 100 cm) with minimum input data (mean air temperature). For this purpose, use was made of the 14-year meteorological data obtained for the two regions of Gorgan in northern Iran with a humid climate and Zabol in southeastern Iran with a dry climate. Comparisons of the model performances in arid and humid regions showed that both ANNs and CANFIS models performed better in arid regions. The accuracy of the soil temperature predictions by both ANNs and CANFIS models gradually decreased from the surface down to the various depths. The results also indicated the capabilities of the ANNs in predicting soil temperature in arid and humid regions.


英文关键词ANN CANFIS Soil temperature Air temperature Climate
类型Article
语种英语
国家Iran ; Canada
收录类别SCI-E
WOS记录号WOS:000375767000048
WOS关键词PAN EVAPORATION ; PREDICTION ; MODEL
WOS类目Geosciences, Multidisciplinary
WOS研究方向Geology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/191423
作者单位1.Bu Ali Sina Univ, Dept Irrigat & Drainage Engn, Hamadan, Iran;
2.Malayer Univ, Dept Water Engn, Malayer, Iran;
3.Univ Guelph, Sch Engn, Guelph, ON N1G 2W1, Canada
推荐引用方式
GB/T 7714
Abyaneh, Hamid Zare,Varkeshi, Maryam Bayat,Golmohammadi, Golmar,et al. Soil temperature estimation using an artificial neural network and co-active neuro-fuzzy inference system in two different climates[J],2016,9(5).
APA Abyaneh, Hamid Zare,Varkeshi, Maryam Bayat,Golmohammadi, Golmar,&Mohammadi, Kourosh.(2016).Soil temperature estimation using an artificial neural network and co-active neuro-fuzzy inference system in two different climates.ARABIAN JOURNAL OF GEOSCIENCES,9(5).
MLA Abyaneh, Hamid Zare,et al."Soil temperature estimation using an artificial neural network and co-active neuro-fuzzy inference system in two different climates".ARABIAN JOURNAL OF GEOSCIENCES 9.5(2016).
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
Soil temperature est(2904KB)期刊论文出版稿开放获取CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Abyaneh, Hamid Zare]的文章
[Varkeshi, Maryam Bayat]的文章
[Golmohammadi, Golmar]的文章
百度学术
百度学术中相似的文章
[Abyaneh, Hamid Zare]的文章
[Varkeshi, Maryam Bayat]的文章
[Golmohammadi, Golmar]的文章
必应学术
必应学术中相似的文章
[Abyaneh, Hamid Zare]的文章
[Varkeshi, Maryam Bayat]的文章
[Golmohammadi, Golmar]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Soil temperature estimation using an artificial neural network and co-active neuro-fuzzy inference system in two different climates.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。