Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1016/j.rse.2015.04.001 |
Advantages using the thermal infrared (TIR) to detect and quantify semi-arid soil properties | |
Eisele, Andreas1; Chabrillat, Sabine1; Hecker, Christoph2; Hewson, Robert3; Lau, Ian C.4; Rogass, Christian1; Segl, Karl1; Cudahy, Thomas John4; Udelhoven, Thomas5; Hostert, Patrick6; Kaufmann, Hermann1 | |
通讯作者 | Eisele, Andreas |
来源期刊 | REMOTE SENSING OF ENVIRONMENT
![]() |
ISSN | 0034-4257 |
EISSN | 1879-0704 |
出版年 | 2015 |
卷号 | 163页码:296-311 |
英文摘要 | Monitoring soil surface dynamics in semi-arid agricultural landscapes becomes increasingly important due to the vulnerability of these ecosystems to desertification processes. Observations using remote sensing via the traditionally used visible-near infrared (VNIR) and shortwave infrared (SWIR) wavelength regions can be limited due to the special characteristics of such soils (e.g. rich in quartz, poor in clay minerals, coarse textured, and grain coatings). In this laboratory-based work we demonstrate the capabilities of the thermal infrared between 8 and 14 mu m (longwave infrared) to detect and quantify small ranges of the soil properties sand-, clay, and soil organic carbon (SOC) content, as they appear in the semi-arid agricultural landscapes of the Mullewa region in Western Australia. All of the three soil properties could be predicted using the longwave infrared (LWIR) spectra with higher accuracy and precision than from the VNIR-SWIR wavelength region. The study revealed the complex relationships between the soil properties and the VNIR-SWIR soil spectra, which were caused by the spectral influence of the soils’ grain coatings (based on iron and clay minerals). These difficulties could be handled more appropriately by the prediction models based on the LWIR soil spectra. Our results indicate that in order to quantitatively monitor farming areas for such erosion-related soil properties; remote sensing using the LWIR wavelength region would produce better estimates than using the wavelength ranges in the VNIR-SWIR. (C) 2015 Elsevier Inc All rights reserved. |
英文关键词 | Thermal infrared (TIR) Longwave infrared (LWIR) Emission FTIR spectroscopy Digital soil mapping (DSM) Semi-arid soils Soil properties Soil grain coatings Soil organic carbon (SOC) Soil texture Particle size Topsoil coarsening |
类型 | Article |
语种 | 英语 |
国家 | Germany ; Netherlands ; Australia |
收录类别 | SCI-E |
WOS记录号 | WOS:000355771300026 |
WOS关键词 | PARTICULATE PLANETARY SURFACES ; MU-M ; ORGANIC-MATTER ; MIDINFRARED SPECTROSCOPY ; SPECTRAL REFLECTANCE ; LABORATORY MEASUREMENTS ; IMAGING SPECTROSCOPY ; FIELD SPECTROMETER ; ASTER DATA ; EMISSIVITY |
WOS类目 | Environmental Sciences ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS研究方向 | Environmental Sciences & Ecology ; Remote Sensing ; Imaging Science & Photographic Technology |
来源机构 | Commonwealth Scientific and Industrial Research Organisation |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/190206 |
作者单位 | 1.German Res Ctr Geosci, Helmholtz Ctr Potsdam, D-14473 Potsdam, Germany; 2.Univ Twente, Fac Geoinformat Sci & Earth Observat ITC, Dept Earth Syst Anal, NL-7500 AE Enschede, Netherlands; 3.RMIT Univ, Sch Math & Geospatial Sci, Melbourne, Vic 3001, Australia; 4.CSIRO, CSIRO Mineral Resources Flagship, Kensington, WA 6151, Australia; 5.Univ Trier, Environm Remote Sensing & Geoinformat Dept, D-54286 Trier, Germany; 6.Humboldt Univ, Dept Geog, D-10099 Berlin, Germany |
推荐引用方式 GB/T 7714 | Eisele, Andreas,Chabrillat, Sabine,Hecker, Christoph,et al. Advantages using the thermal infrared (TIR) to detect and quantify semi-arid soil properties[J]. Commonwealth Scientific and Industrial Research Organisation,2015,163:296-311. |
APA | Eisele, Andreas.,Chabrillat, Sabine.,Hecker, Christoph.,Hewson, Robert.,Lau, Ian C..,...&Kaufmann, Hermann.(2015).Advantages using the thermal infrared (TIR) to detect and quantify semi-arid soil properties.REMOTE SENSING OF ENVIRONMENT,163,296-311. |
MLA | Eisele, Andreas,et al."Advantages using the thermal infrared (TIR) to detect and quantify semi-arid soil properties".REMOTE SENSING OF ENVIRONMENT 163(2015):296-311. |
条目包含的文件 | ||||||
文件名称/大小 | 资源类型 | 版本类型 | 开放类型 | 使用许可 | ||
Advantages using the(3531KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。