Arid
DOI10.3390/rs71215824
A Novel Bias Correction Method for Soil Moisture and Ocean Salinity (SMOS) Soil Moisture: Retrieval Ensembles
Lee, Ju Hyoung; Im, Jungho
通讯作者Im, Jungho
来源期刊REMOTE SENSING
ISSN2072-4292
出版年2015
卷号7期号:12页码:16045-16061
英文摘要

Bias correction is a very important pre-processing step in satellite data assimilation analysis, as data assimilation itself cannot circumvent satellite biases. We introduce a retrieval algorithm-specific and spatially heterogeneous Instantaneous Field of View (IFOV) bias correction method for Soil Moisture and Ocean Salinity (SMOS) soil moisture. To the best of our knowledge, this is the first paper to present the probabilistic presentation of SMOS soil moisture using retrieval ensembles. We illustrate that retrieval ensembles effectively mitigated the overestimation problem of SMOS soil moisture arising from brightness temperature errors over West Africa in a computationally efficient way (ensemble size: 12, no time-integration). In contrast, the existing method of Cumulative Distribution Function (CDF) matching considerably increased the SMOS biases, due to the limitations of relying on the imperfect reference data. From the validation at two semi-arid sites, Benin (moderately wet and vegetated area) and Niger (dry and sandy bare soils), it was shown that the SMOS errors arising from rain and vegetation attenuation were appropriately corrected by ensemble approaches. In Benin, the Root Mean Square Errors (RMSEs) decreased from 0.1248 m(3)/m(3) for CDF matching to 0.0678 m(3)/m(3) for the proposed ensemble approach. In Niger, the RMSEs decreased from 0.14 m(3)/m(3) for CDF matching to 0.045 m(3)/m(3) for the ensemble approach.


英文关键词bias correction SMOS soil moisture data assimilation brightness temperature (TB) ensembles West Africa
类型Article
语种英语
国家South Korea
收录类别SCI-E
WOS记录号WOS:000367534000013
WOS关键词INTEGRATED FORECAST SYSTEM ; DATA ASSIMILATION ; LAND-SURFACE ; KALMAN FILTER ; WEST-AFRICA ; MODEL ; RAINFALL ; PRECIPITATION ; EMISSION
WOS类目Remote Sensing
WOS研究方向Remote Sensing
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/190191
作者单位Ulsan Natl Inst Sci & Technol, Sch Urban & Environm Engn, Ulsan 44919, South Korea
推荐引用方式
GB/T 7714
Lee, Ju Hyoung,Im, Jungho. A Novel Bias Correction Method for Soil Moisture and Ocean Salinity (SMOS) Soil Moisture: Retrieval Ensembles[J],2015,7(12):16045-16061.
APA Lee, Ju Hyoung,&Im, Jungho.(2015).A Novel Bias Correction Method for Soil Moisture and Ocean Salinity (SMOS) Soil Moisture: Retrieval Ensembles.REMOTE SENSING,7(12),16045-16061.
MLA Lee, Ju Hyoung,et al."A Novel Bias Correction Method for Soil Moisture and Ocean Salinity (SMOS) Soil Moisture: Retrieval Ensembles".REMOTE SENSING 7.12(2015):16045-16061.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lee, Ju Hyoung]的文章
[Im, Jungho]的文章
百度学术
百度学术中相似的文章
[Lee, Ju Hyoung]的文章
[Im, Jungho]的文章
必应学术
必应学术中相似的文章
[Lee, Ju Hyoung]的文章
[Im, Jungho]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。