Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.3390/rs71215824 |
A Novel Bias Correction Method for Soil Moisture and Ocean Salinity (SMOS) Soil Moisture: Retrieval Ensembles | |
Lee, Ju Hyoung; Im, Jungho | |
通讯作者 | Im, Jungho |
来源期刊 | REMOTE SENSING
![]() |
ISSN | 2072-4292 |
出版年 | 2015 |
卷号 | 7期号:12页码:16045-16061 |
英文摘要 | Bias correction is a very important pre-processing step in satellite data assimilation analysis, as data assimilation itself cannot circumvent satellite biases. We introduce a retrieval algorithm-specific and spatially heterogeneous Instantaneous Field of View (IFOV) bias correction method for Soil Moisture and Ocean Salinity (SMOS) soil moisture. To the best of our knowledge, this is the first paper to present the probabilistic presentation of SMOS soil moisture using retrieval ensembles. We illustrate that retrieval ensembles effectively mitigated the overestimation problem of SMOS soil moisture arising from brightness temperature errors over West Africa in a computationally efficient way (ensemble size: 12, no time-integration). In contrast, the existing method of Cumulative Distribution Function (CDF) matching considerably increased the SMOS biases, due to the limitations of relying on the imperfect reference data. From the validation at two semi-arid sites, Benin (moderately wet and vegetated area) and Niger (dry and sandy bare soils), it was shown that the SMOS errors arising from rain and vegetation attenuation were appropriately corrected by ensemble approaches. In Benin, the Root Mean Square Errors (RMSEs) decreased from 0.1248 m(3)/m(3) for CDF matching to 0.0678 m(3)/m(3) for the proposed ensemble approach. In Niger, the RMSEs decreased from 0.14 m(3)/m(3) for CDF matching to 0.045 m(3)/m(3) for the ensemble approach. |
英文关键词 | bias correction SMOS soil moisture data assimilation brightness temperature (TB) ensembles West Africa |
类型 | Article |
语种 | 英语 |
国家 | South Korea |
收录类别 | SCI-E |
WOS记录号 | WOS:000367534000013 |
WOS关键词 | INTEGRATED FORECAST SYSTEM ; DATA ASSIMILATION ; LAND-SURFACE ; KALMAN FILTER ; WEST-AFRICA ; MODEL ; RAINFALL ; PRECIPITATION ; EMISSION |
WOS类目 | Remote Sensing |
WOS研究方向 | Remote Sensing |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/190191 |
作者单位 | Ulsan Natl Inst Sci & Technol, Sch Urban & Environm Engn, Ulsan 44919, South Korea |
推荐引用方式 GB/T 7714 | Lee, Ju Hyoung,Im, Jungho. A Novel Bias Correction Method for Soil Moisture and Ocean Salinity (SMOS) Soil Moisture: Retrieval Ensembles[J],2015,7(12):16045-16061. |
APA | Lee, Ju Hyoung,&Im, Jungho.(2015).A Novel Bias Correction Method for Soil Moisture and Ocean Salinity (SMOS) Soil Moisture: Retrieval Ensembles.REMOTE SENSING,7(12),16045-16061. |
MLA | Lee, Ju Hyoung,et al."A Novel Bias Correction Method for Soil Moisture and Ocean Salinity (SMOS) Soil Moisture: Retrieval Ensembles".REMOTE SENSING 7.12(2015):16045-16061. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Lee, Ju Hyoung]的文章 |
[Im, Jungho]的文章 |
百度学术 |
百度学术中相似的文章 |
[Lee, Ju Hyoung]的文章 |
[Im, Jungho]的文章 |
必应学术 |
必应学术中相似的文章 |
[Lee, Ju Hyoung]的文章 |
[Im, Jungho]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。