Arid
DOI10.3390/rs71215853
Validity of Five Satellite-Based Latent Heat Flux Algorithms for Semi-arid Ecosystems
Feng, Fei1; Chen, Jiquan2; Li, Xianglan1; Yao, Yunjun3; Liang, Shunlin3,4; Liu, Meng3,5,6; Zhang, Nannan7; Guo, Yang1; Yu, Jian3; Sun, Minmin1
通讯作者Li, Xianglan
来源期刊REMOTE SENSING
EISSN2072-4292
出版年2015
卷号7期号:12页码:16733-16755
英文摘要

Accurate estimation of latent heat flux (LE) is critical in characterizing semiarid ecosystems. Many LE algorithms have been developed during the past few decades. However, the algorithms have not been directly compared, particularly over global semiarid ecosystems. In this paper, we evaluated the performance of five LE models over semiarid ecosystems such as grassland, shrub, and savanna using the Fluxnet dataset of 68 eddy covariance (EC) sites during the period 2000-2009. We also used a modern-era retrospective analysis for research and applications (MERRA) dataset, the Normalized Difference Vegetation Index (NDVI) and Fractional Photosynthetically Active Radiation (FPAR) from the moderate resolution imaging spectroradiometer (MODIS) products; the leaf area index (LAI) from the global land surface satellite (GLASS) products; and the digital elevation model (DEM) from shuttle radar topography mission (SRTM30) dataset to generate LE at region scale during the period 2003-2006. The models were the moderate resolution imaging spectroradiometer LE (MOD16) algorithm, revised remote sensing based Penman-Monteith LE algorithm (RRS), the Priestley-Taylor LE algorithm of the Jet Propulsion Laboratory (PT-JPL), the modified satellite-based Priestley-Taylor LE algorithm (MS-PT), and the semi-empirical Penman LE algorithm (UMD). Direct comparison with ground measured LE showed the PT-JPL and MS-PT algorithms had relative high performance over semiarid ecosystems with the coefficient of determination (R-2) ranging from 0.6 to 0.8 and root mean squared error (RMSE) of approximately 20 W/m(2). Empirical parameters in the structure algorithms of MOD16 and RRS, and calibrated coefficients of the UMD algorithm may be the cause of the reduced performance of these LE algorithms with R-2 ranging from 0.5 to 0.7 and RMSE ranging from 20 to 35 W/m(2) for MOD16, RRS and UMD. Sensitivity analysis showed that radiation and vegetation terms were the dominating variables affecting LE Fluxes in global semiarid ecosystem.


英文关键词latent heat flux grassland ecosystems revised remote sensing based Penman-Monteith LE algorithm MOD16 modified satellite-based Priestley-Taylor LE algorithm semi-empirical Penman LE algorithm
类型Article
语种英语
国家Peoples R China ; USA
收录类别SCI-E
WOS记录号WOS:000367534000047
WOS关键词PENMAN-MONTEITH EQUATION ; ENERGY-BALANCE CLOSURE ; EDDY-COVARIANCE ; CARBON-DIOXIDE ; CANOPY RESISTANCE ; WATER-VAPOR ; PART I ; EVAPOTRANSPIRATION ; MODIS ; EVAPORATION
WOS类目Remote Sensing
WOS研究方向Remote Sensing
来源机构中国科学院地理科学与资源研究所 ; 北京师范大学
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/190190
作者单位1.Beijing Normal Univ, Coll Global Change & Earth Syst Sci, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China;
2.Michigan State Univ, Landscape Ecol & Ecosyst Sci LEES Lab, CGCEO, E Lansing, MI 48823 USA;
3.Beijing Normal Univ, Sch Geog, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China;
4.Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA;
5.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100049, Peoples R China;
6.Univ Chinese Acad Sci, Beijing 100049, Peoples R China;
7.China Petr Pipeline Bur, Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R China
推荐引用方式
GB/T 7714
Feng, Fei,Chen, Jiquan,Li, Xianglan,et al. Validity of Five Satellite-Based Latent Heat Flux Algorithms for Semi-arid Ecosystems[J]. 中国科学院地理科学与资源研究所, 北京师范大学,2015,7(12):16733-16755.
APA Feng, Fei.,Chen, Jiquan.,Li, Xianglan.,Yao, Yunjun.,Liang, Shunlin.,...&Sun, Minmin.(2015).Validity of Five Satellite-Based Latent Heat Flux Algorithms for Semi-arid Ecosystems.REMOTE SENSING,7(12),16733-16755.
MLA Feng, Fei,et al."Validity of Five Satellite-Based Latent Heat Flux Algorithms for Semi-arid Ecosystems".REMOTE SENSING 7.12(2015):16733-16755.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Feng, Fei]的文章
[Chen, Jiquan]的文章
[Li, Xianglan]的文章
百度学术
百度学术中相似的文章
[Feng, Fei]的文章
[Chen, Jiquan]的文章
[Li, Xianglan]的文章
必应学术
必应学术中相似的文章
[Feng, Fei]的文章
[Chen, Jiquan]的文章
[Li, Xianglan]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。