Arid
DOI10.1088/0031-9155/60/22/8851
Hippocampal unified multi-atlas network (HUMAN): protocol and scale validation of a novel segmentation tool
Amoroso, N.1,2; Errico, R.1,3; Bruno, S.; Chincarini, A.3; Garuccio, E.4; Sensi, F.3; Tangaro, S.2; Tateo, A.2; Bellotti, R.1,2
通讯作者Amoroso, N.
来源期刊PHYSICS IN MEDICINE AND BIOLOGY
ISSN0031-9155
EISSN1361-6560
出版年2015
卷号60期号:22页码:8851-8867
英文摘要

In this study we present a novel fully automated Hippocampal Unified Multi-Atlas-Networks (HUMAN) algorithm for the segmentation of the hippocampus in structural magnetic resonance imaging. In multi-atlas approaches atlas selection is of crucial importance for the accuracy of the segmentation. Here we present an optimized method based on the definition of a small peri-hippocampal region to target the atlas learning with linear and non-linear embedded manifolds. All atlases were co-registered to a data driven template resulting in a computationally efficient method that requires only one test registration. The optimal atlases identified were used to train dedicated artificial neural networks whose labels were then propagated and fused to obtain the final segmentation. To quantify data heterogeneity and protocol inherent effects, HUMAN was tested on two independent data sets provided by the Alzheimer’s Disease Neuroimaging Initiative and the Open Access Series of Imaging Studies. HUMAN is accurate and achieves state-of-the-art performance (Dice(ADNI) = 0.929 +/- 0.003 and Dice(OASIS) = 0.869 +/- 0.002). It is also a robust method that remains stable when applied to the whole hippocampus or to sub-regions (patches). HUMAN also compares favorably with a basic multi-atlas approach and a benchmark segmentation tool such as FreeSurfer.


英文关键词hippocampus segmentation machine learning multi-atlas
类型Article
语种英语
国家Italy
收录类别SCI-E
WOS记录号WOS:000366108900017
WOS关键词AUTOMATIC SEGMENTATION ; MR-IMAGES ; ALGORITHMS ; SIMILARITY
WOS类目Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS研究方向Engineering ; Radiology, Nuclear Medicine & Medical Imaging
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/189602
作者单位1.Univ Bari Aldo Moro, Dipartimento Interateneo Fis M Merlin, I-70121 Bari, Italy;
2.Ist Nazl Fis Nucl, Sez Bari, Milan, Italy;
3.Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy;
4.Univ Siena, Dipartimento Fis, I-53100 Siena, SI, Italy
推荐引用方式
GB/T 7714
Amoroso, N.,Errico, R.,Bruno, S.,et al. Hippocampal unified multi-atlas network (HUMAN): protocol and scale validation of a novel segmentation tool[J],2015,60(22):8851-8867.
APA Amoroso, N..,Errico, R..,Bruno, S..,Chincarini, A..,Garuccio, E..,...&Bellotti, R..(2015).Hippocampal unified multi-atlas network (HUMAN): protocol and scale validation of a novel segmentation tool.PHYSICS IN MEDICINE AND BIOLOGY,60(22),8851-8867.
MLA Amoroso, N.,et al."Hippocampal unified multi-atlas network (HUMAN): protocol and scale validation of a novel segmentation tool".PHYSICS IN MEDICINE AND BIOLOGY 60.22(2015):8851-8867.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Amoroso, N.]的文章
[Errico, R.]的文章
[Bruno, S.]的文章
百度学术
百度学术中相似的文章
[Amoroso, N.]的文章
[Errico, R.]的文章
[Bruno, S.]的文章
必应学术
必应学术中相似的文章
[Amoroso, N.]的文章
[Errico, R.]的文章
[Bruno, S.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。