Arid
DOI10.1002/ldr.2193
OBJECT-BASED MAPPING OF KARST ROCKY DESERTIFICATION USING A SUPPORT VECTOR MACHINE
Xu, E-Q1,2; Zhang, H-Q1; Li, M-X3
通讯作者Zhang, H-Q
来源期刊LAND DEGRADATION & DEVELOPMENT
ISSN1085-3278
EISSN1099-145X
出版年2015
卷号26期号:2页码:158-167
英文摘要

Accurate and cost-effective mapping of karst rocky desertification (KRD) is still a challenge at the regional and national scale. Visual interpretation has been utilised in the majority of studies, while an automated method based on pixel data has been investigated repeatedly. An object-based method coupling with support vector machine (SVM) was developed and tested using Enhanced Thematic Mapper Plus (ETM+) images from three selected counties (Liujiang, Changshun and Zhenyuan) with different karst landscapes in SW China. The method supports a strategy of defining a mapping unit. It combined ETM+ images and ancillary data including elevation, slope and Normalized Difference Vegetation Index images. A sequence of scale parameters estimation, image segmentation, training data sampling, SVM parameters tuning and object classification was performed to achieve the mapping. A quantitative and semi-automated approach was used to estimate scale parameters for segmenting an object at an optimal scale. We calculated the sum of area-weighted standard deviation (WS), rate of change for WS, local variance (LV) and rate of change for LV at each scale level, and the threshold of the aforementioned index that indicated the optimal segment level and merge level. The KRD classification results had overall accuracies of 8550, 8400 and 8486 per cent for Liujiang, Changshun and Zhenyuan, respectively, and kappa coefficients are up to 08062, 07917 and 08083, respectively. This approach mapped six classes of KRD and offered a visually appealing presentation. Moreover, it proposed a conceptual and size-variable object from the classification standard of KRD. The results demonstrate that the application of our method provides an efficient approach for the mapping of KRD. Copyright (c) 2012 John Wiley & Sons, Ltd.


英文关键词karst rocky desertification object-based image segmentation optimal object scale different karst landscapes China
类型Article
语种英语
国家Peoples R China
收录类别SCI-E
WOS记录号WOS:000348899600006
WOS关键词LAND-COVER ; CLASSIFICATION ; AREAS ; PATTERN
WOS类目Environmental Sciences ; Soil Science
WOS研究方向Environmental Sciences & Ecology ; Agriculture
来源机构中国科学院地理科学与资源研究所
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/189095
作者单位1.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China;
2.Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China;
3.State Forestry Adm, Combating Desertificat Management Ctr, Beijing 100714, Peoples R China
推荐引用方式
GB/T 7714
Xu, E-Q,Zhang, H-Q,Li, M-X. OBJECT-BASED MAPPING OF KARST ROCKY DESERTIFICATION USING A SUPPORT VECTOR MACHINE[J]. 中国科学院地理科学与资源研究所,2015,26(2):158-167.
APA Xu, E-Q,Zhang, H-Q,&Li, M-X.(2015).OBJECT-BASED MAPPING OF KARST ROCKY DESERTIFICATION USING A SUPPORT VECTOR MACHINE.LAND DEGRADATION & DEVELOPMENT,26(2),158-167.
MLA Xu, E-Q,et al."OBJECT-BASED MAPPING OF KARST ROCKY DESERTIFICATION USING A SUPPORT VECTOR MACHINE".LAND DEGRADATION & DEVELOPMENT 26.2(2015):158-167.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
OBJECT-BASED MAPPING(557KB)期刊论文出版稿开放获取CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, E-Q]的文章
[Zhang, H-Q]的文章
[Li, M-X]的文章
百度学术
百度学术中相似的文章
[Xu, E-Q]的文章
[Zhang, H-Q]的文章
[Li, M-X]的文章
必应学术
必应学术中相似的文章
[Xu, E-Q]的文章
[Zhang, H-Q]的文章
[Li, M-X]的文章
相关权益政策
暂无数据
收藏/分享
文件名: OBJECT-BASED MAPPING OF KARST ROCKY DESERTIFICATION USING A SUPPORT VECTOR MACHINE.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。