Arid
DOI10.1002/2014JD022968
Spectrally Enhanced Cloud ObjectsA generalized framework for automated detection of volcanic ash and dust clouds using passive satellite measurements: 1. Multispectral analysis
Pavolonis, Michael J.1; Sieglaff, Justin2; Cintineo, John2
通讯作者Pavolonis, Michael J.
来源期刊JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
ISSN2169-897X
EISSN2169-8996
出版年2015
卷号120期号:15页码:7813-7841
英文摘要

While satellites are a proven resource for detecting and tracking volcanic ash and dust clouds, existing algorithms for automatically detecting volcanic ash and dust either exhibit poor overall skill or can only be applied to a limited number of sensors and/or geographic regions. As such, existing techniques are not optimized for use in real-time applications like volcanic eruption alerting and data assimilation. In an effort to significantly improve upon existing capabilities, the Spectrally Enhanced Cloud Objects (SECO) algorithm was developed. The SECO algorithm utilizes a combination of radiative transfer theory, a statistical model, and image processing techniques to identify volcanic ash and dust clouds in satellite imagery with a very low false alarm rate. This fully automated technique is globally applicable (day and night) and can be adapted to a wide range of low earth orbit and geostationary satellite sensors or even combinations of satellite sensors. The SECO algorithm consists of four primary components: conversion of satellite measurements into robust spectral metrics, application of a Bayesian method to estimate the probability that a given satellite pixel contains volcanic ash and/or dust, construction of cloud objects, and the selection of cloud objects deemed to have the physical attributes consistent with volcanic ash and/or dust clouds. The first two components of the SECO algorithm are described in this paper, while the final two components are described in a companion paper.


英文关键词remote sensing volcanic ash dust clouds clouds radiative transfer probability
类型Article
语种英语
国家USA
收录类别SCI-E
WOS记录号WOS:000360501900032
WOS关键词SEA-SURFACE TEMPERATURE ; COMPONENT IMAGE-ANALYSIS ; LAGUNA-MAR-CHIQUITA ; REDOUBT VOLCANO ; CIRRUS CLOUDS ; AFRICAN DUST ; DESERT DUST ; PART I ; MODIS ; RETRIEVALS
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/188688
作者单位1.NOAA, Ctr Satellite Applicat & Res, Madison, WI 53706 USA;
2.Cooperat Inst Meteorol Satellite Studies, Madison, WI USA
推荐引用方式
GB/T 7714
Pavolonis, Michael J.,Sieglaff, Justin,Cintineo, John. Spectrally Enhanced Cloud ObjectsA generalized framework for automated detection of volcanic ash and dust clouds using passive satellite measurements: 1. Multispectral analysis[J],2015,120(15):7813-7841.
APA Pavolonis, Michael J.,Sieglaff, Justin,&Cintineo, John.(2015).Spectrally Enhanced Cloud ObjectsA generalized framework for automated detection of volcanic ash and dust clouds using passive satellite measurements: 1. Multispectral analysis.JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,120(15),7813-7841.
MLA Pavolonis, Michael J.,et al."Spectrally Enhanced Cloud ObjectsA generalized framework for automated detection of volcanic ash and dust clouds using passive satellite measurements: 1. Multispectral analysis".JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 120.15(2015):7813-7841.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Pavolonis, Michael J.]的文章
[Sieglaff, Justin]的文章
[Cintineo, John]的文章
百度学术
百度学术中相似的文章
[Pavolonis, Michael J.]的文章
[Sieglaff, Justin]的文章
[Cintineo, John]的文章
必应学术
必应学术中相似的文章
[Pavolonis, Michael J.]的文章
[Sieglaff, Justin]的文章
[Cintineo, John]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。