Arid
DOI10.1080/01431161.2015.1084552
Mapping the land-cover distribution in arid and semiarid urban landscapes with Landsat Thematic Mapper imagery
Zhang, Chi1; Chen, Yaoliang2; Lu, Dengsheng3,4
通讯作者Lu, Dengsheng
来源期刊INTERNATIONAL JOURNAL OF REMOTE SENSING
ISSN0143-1161
EISSN1366-5901
出版年2015
卷号36期号:17页码:4483-4500
英文摘要

Mapping the land-cover distribution in arid and semiarid urban landscapes using medium spatial resolution imagery is especially difficult due to the mixed-pixel problem in remotely sensed data and the confusion of spectral signatures among bare soils, sparse density shrub lands, and impervious surface areas (ISAs hereafter). This article explores a hybrid method consisting of linear spectral mixture analysis (LSMA), decision tree classifier, and cluster analysis for mapping land-cover distribution in two arid and semiarid urban landscapes: Urumqi, China, and Phoenix, USA. The Landsat Thematic Mapper (TM) imagery was unmixed into four endmember fraction images (i.e. high-albedo object, low-albedo object, green vegetation (GV), and soil) using the LSMA approach. New variables from these fraction images and TM spectral bands were used to map seven land-cover classes (i.e. forest, shrub, grass, crop, bare soil, ISA, and water) using the decision tree classifier. The cluster analysis was further used to modify the classification results. QuickBird imagery in Urumqi and aerial photographs in Phoenix were used to assess classification accuracy. Overall classification accuracies of 86.0% for Urumqi and 88.7% for Phoenix were obtained, much higher accuracies than those utilizing the traditional maximum likelihood classifier (MLC). This research demonstrates the necessity of using new variables from fraction images to distinguish between ISA and bare soils and between shrub and other vegetation types. It also indicates the different effects of spatial patterns of land-cover composition in arid and semiarid landscapes on urban land-cover classification.


类型Article
语种英语
国家Peoples R China ; USA
收录类别SCI-E
WOS记录号WOS:000361011100011
WOS关键词SPECTRAL MIXTURE ANALYSIS ; IMPERVIOUS SURFACE ; DATA FUSION ; CLASSIFICATION ; PHOENIX ; CHINA ; URBANIZATION ; ACCURACY ; AREA ; INFORMATION
WOS类目Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Remote Sensing ; Imaging Science & Photographic Technology
来源机构中国科学院新疆生态与地理研究所
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/188042
作者单位1.Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi 830011, Xinjiang, Peoples R China;
2.Zhejiang Univ, Sch Publ Affairs, Dept Land Management, Hangzhou 310058, Zhejiang, Peoples R China;
3.Zhejiang A&F Univ, Sch Environm & Resource Sci, Zhejiang Prov Key Lab Carbon Cycling Forest Ecosy, Lin An 311300, Zhejiang, Peoples R China;
4.Michigan State Univ, Ctr Global Change & Earth Observat, E Lansing, MI 48823 USA
推荐引用方式
GB/T 7714
Zhang, Chi,Chen, Yaoliang,Lu, Dengsheng. Mapping the land-cover distribution in arid and semiarid urban landscapes with Landsat Thematic Mapper imagery[J]. 中国科学院新疆生态与地理研究所,2015,36(17):4483-4500.
APA Zhang, Chi,Chen, Yaoliang,&Lu, Dengsheng.(2015).Mapping the land-cover distribution in arid and semiarid urban landscapes with Landsat Thematic Mapper imagery.INTERNATIONAL JOURNAL OF REMOTE SENSING,36(17),4483-4500.
MLA Zhang, Chi,et al."Mapping the land-cover distribution in arid and semiarid urban landscapes with Landsat Thematic Mapper imagery".INTERNATIONAL JOURNAL OF REMOTE SENSING 36.17(2015):4483-4500.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Chi]的文章
[Chen, Yaoliang]的文章
[Lu, Dengsheng]的文章
百度学术
百度学术中相似的文章
[Zhang, Chi]的文章
[Chen, Yaoliang]的文章
[Lu, Dengsheng]的文章
必应学术
必应学术中相似的文章
[Zhang, Chi]的文章
[Chen, Yaoliang]的文章
[Lu, Dengsheng]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。