Arid
DOI10.1093/gji/ggv126
Chances and limits of single-station seismic event clustering by unsupervised pattern recognition
Sick, Benjamin1; Guggenmos, Matthias2; Joswig, Manfred1
通讯作者Sick, Benjamin
来源期刊GEOPHYSICAL JOURNAL INTERNATIONAL
ISSN0956-540X
EISSN1365-246X
出版年2015
卷号201期号:3页码:1801-1813
英文摘要

Automatic classification of local seismic events which are only recorded at single stations poses great challenges because of weak hypocentre constraints. This study investigates how single-station event clusters relate to geographic hypocentre regions and common source processes. Typical applications arise in local seismic networks where reliable ground truth by a dense temporal network precedes or follows a sparse (permanent) installation. The seismic signals for this study comprise a 3-month subset from a field campaign to map subduction below northern Chile (PISCO ’94). Due to favourable ground noise conditions in the Atacama desert, the data set contains an abundance of shallow and deeper earthquakes, and many quarry explosions. Often event signatures overlap, posing a challenge to any signal processing scheme. Pattern recognition must work on reduced seismograms to restrict parameter dimensionality. Continuous parameter extraction based on noise-adapted spectrograms was chosen instead of discrete representation by, for example, amplitudes, onset times or spectral ratios to ensure consideration of potentially hidden features. Visualization of the derived feature vectors for human inspection and template matching algorithms was hereby possible. Because event classes shall comprise earthquake regions regardless of magnitude, clustering based on amplitudes is prevented by proper normalization of feature vectors. Principal component analysis is applied to further reduce the number of features used to train a self-organizing map (SOM). The SOM will topologically arrange prototypes of each event class in a 2-D map. Overcoming the restrictions of this black-box approach, the arranged prototypes could be transformed back to spectrograms to allow for visualization and interpretation of event classes. The final step relates prototypes to ground-truth information, confirming the potential of automated, coarse-grain hypocentre clustering based on single-station seismograms. The approach was tested by a twofold cross-validation whereby multiple sets of feature vectors from half the events are compared by a one-nearest neighbour classifier in combination with an Euclidean distance measure resulting in an overall correct geographic separation rate of 80.5 per cent.


英文关键词Neural networks fuzzy logic Fourier analysis Self-organization Computational seismology South America
类型Article
语种英语
国家Germany
收录类别SCI-E
WOS记录号WOS:000355321800042
WOS关键词SELF-ORGANIZING MAPS ; CLASSIFICATION ; DISCRIMINATION ; IDENTIFICATION ; PHASE
WOS类目Geochemistry & Geophysics
WOS研究方向Geochemistry & Geophysics
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/187535
作者单位1.Univ Stuttgart, Inst Geophys, D-70174 Stuttgart, Germany;
2.Bernstein Ctr Computat Neurosci, Berlin, Germany
推荐引用方式
GB/T 7714
Sick, Benjamin,Guggenmos, Matthias,Joswig, Manfred. Chances and limits of single-station seismic event clustering by unsupervised pattern recognition[J],2015,201(3):1801-1813.
APA Sick, Benjamin,Guggenmos, Matthias,&Joswig, Manfred.(2015).Chances and limits of single-station seismic event clustering by unsupervised pattern recognition.GEOPHYSICAL JOURNAL INTERNATIONAL,201(3),1801-1813.
MLA Sick, Benjamin,et al."Chances and limits of single-station seismic event clustering by unsupervised pattern recognition".GEOPHYSICAL JOURNAL INTERNATIONAL 201.3(2015):1801-1813.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sick, Benjamin]的文章
[Guggenmos, Matthias]的文章
[Joswig, Manfred]的文章
百度学术
百度学术中相似的文章
[Sick, Benjamin]的文章
[Guggenmos, Matthias]的文章
[Joswig, Manfred]的文章
必应学术
必应学术中相似的文章
[Sick, Benjamin]的文章
[Guggenmos, Matthias]的文章
[Joswig, Manfred]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。