Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1214/15-AOAS835 |
BAYESIAN MOTION ESTIMATION FOR DUST AEROSOLS | |
Bachl, Fabian E.1; Lenkoski, Alex2; Thorarinsdottir, Thordis L.2; Garbe, Christoph S.3 | |
通讯作者 | Bachl, Fabian E. |
来源期刊 | Annals of Applied Statistics
![]() |
ISSN | 1932-6157 |
出版年 | 2015 |
卷号 | 9期号:3页码:1298-1327 |
英文摘要 | Dust storms in the earth’s major desert regions significantly influence microphysical weather processes, the CO2-cycle and the global climate in general. Recent increases in the spatio-temporal resolution of remote sensing instruments have created new opportunities to understand these phenomena. However, the scale of the data collected and the inherent stochasticity of the underlying process pose significant challenges, requiring a careful combination of image processing and statistical techniques. Using satellite imagery data, we develop a statistical model of atmospheric transport that relies on a latent Gaussian Markov random field (GMRF) for inference. In doing so, we make a link between the optical flow method of Horn and Schunck and the formulation of the transport process as a latent field in a generalized linear model. We critically extend this framework to satisfy the integrated continuity equation, thereby incorporating a flow field with nonzero divergence, and show that such an approach dramatically improves performance while remaining computationally feasible. Effects such as air compressibility and satellite column projection hence become intrinsic parts of this model. We conclude with a study of the dynamics of dust storms formed over Saharan Africa and show that our methodology is able to accurately and coherently track storm movement, a critical problem in this field. |
英文关键词 | Gaussian Markov random field Horn and Schunck model integrated continuity equation integrated nested Laplace approximation (INLA) optical flow remote sensing satellite data Saharan dust storm storm tracking |
类型 | Article |
语种 | 英语 |
国家 | England ; Norway ; Germany |
收录类别 | SCI-E |
WOS记录号 | WOS:000364340100008 |
WOS关键词 | DETERMINING OPTICAL-FLOW ; VERIFICATION ; MODELS ; FIELDS ; LAND ; MSG |
WOS类目 | Statistics & Probability |
WOS研究方向 | Mathematics |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/185745 |
作者单位 | 1.Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England; 2.Norwegian Comp Ctr, NO-0373 Oslo, Norway; 3.Heidelberg Univ, Image Proc & Modeling, Interdisciplinary Ctr Sci Comp IWR, D-69115 Heidelberg, Germany |
推荐引用方式 GB/T 7714 | Bachl, Fabian E.,Lenkoski, Alex,Thorarinsdottir, Thordis L.,et al. BAYESIAN MOTION ESTIMATION FOR DUST AEROSOLS[J],2015,9(3):1298-1327. |
APA | Bachl, Fabian E.,Lenkoski, Alex,Thorarinsdottir, Thordis L.,&Garbe, Christoph S..(2015).BAYESIAN MOTION ESTIMATION FOR DUST AEROSOLS.Annals of Applied Statistics,9(3),1298-1327. |
MLA | Bachl, Fabian E.,et al."BAYESIAN MOTION ESTIMATION FOR DUST AEROSOLS".Annals of Applied Statistics 9.3(2015):1298-1327. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。