Arid
DOI10.1214/15-AOAS835
BAYESIAN MOTION ESTIMATION FOR DUST AEROSOLS
Bachl, Fabian E.1; Lenkoski, Alex2; Thorarinsdottir, Thordis L.2; Garbe, Christoph S.3
通讯作者Bachl, Fabian E.
来源期刊Annals of Applied Statistics
ISSN1932-6157
出版年2015
卷号9期号:3页码:1298-1327
英文摘要

Dust storms in the earth’s major desert regions significantly influence microphysical weather processes, the CO2-cycle and the global climate in general. Recent increases in the spatio-temporal resolution of remote sensing instruments have created new opportunities to understand these phenomena. However, the scale of the data collected and the inherent stochasticity of the underlying process pose significant challenges, requiring a careful combination of image processing and statistical techniques. Using satellite imagery data, we develop a statistical model of atmospheric transport that relies on a latent Gaussian Markov random field (GMRF) for inference. In doing so, we make a link between the optical flow method of Horn and Schunck and the formulation of the transport process as a latent field in a generalized linear model. We critically extend this framework to satisfy the integrated continuity equation, thereby incorporating a flow field with nonzero divergence, and show that such an approach dramatically improves performance while remaining computationally feasible. Effects such as air compressibility and satellite column projection hence become intrinsic parts of this model. We conclude with a study of the dynamics of dust storms formed over Saharan Africa and show that our methodology is able to accurately and coherently track storm movement, a critical problem in this field.


英文关键词Gaussian Markov random field Horn and Schunck model integrated continuity equation integrated nested Laplace approximation (INLA) optical flow remote sensing satellite data Saharan dust storm storm tracking
类型Article
语种英语
国家England ; Norway ; Germany
收录类别SCI-E
WOS记录号WOS:000364340100008
WOS关键词DETERMINING OPTICAL-FLOW ; VERIFICATION ; MODELS ; FIELDS ; LAND ; MSG
WOS类目Statistics & Probability
WOS研究方向Mathematics
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/185745
作者单位1.Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England;
2.Norwegian Comp Ctr, NO-0373 Oslo, Norway;
3.Heidelberg Univ, Image Proc & Modeling, Interdisciplinary Ctr Sci Comp IWR, D-69115 Heidelberg, Germany
推荐引用方式
GB/T 7714
Bachl, Fabian E.,Lenkoski, Alex,Thorarinsdottir, Thordis L.,et al. BAYESIAN MOTION ESTIMATION FOR DUST AEROSOLS[J],2015,9(3):1298-1327.
APA Bachl, Fabian E.,Lenkoski, Alex,Thorarinsdottir, Thordis L.,&Garbe, Christoph S..(2015).BAYESIAN MOTION ESTIMATION FOR DUST AEROSOLS.Annals of Applied Statistics,9(3),1298-1327.
MLA Bachl, Fabian E.,et al."BAYESIAN MOTION ESTIMATION FOR DUST AEROSOLS".Annals of Applied Statistics 9.3(2015):1298-1327.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bachl, Fabian E.]的文章
[Lenkoski, Alex]的文章
[Thorarinsdottir, Thordis L.]的文章
百度学术
百度学术中相似的文章
[Bachl, Fabian E.]的文章
[Lenkoski, Alex]的文章
[Thorarinsdottir, Thordis L.]的文章
必应学术
必应学术中相似的文章
[Bachl, Fabian E.]的文章
[Lenkoski, Alex]的文章
[Thorarinsdottir, Thordis L.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。