Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1002/2014WR015281 |
A mechanistic modeling and data assimilation framework for Mojave Desert ecohydrology | |
Ng, Gene-Hua Crystal1,2; Bedford, David R.1; Miller, David M.1 | |
通讯作者 | Ng, Gene-Hua Crystal |
来源期刊 | WATER RESOURCES RESEARCH
![]() |
EISSN | 1944-7973 |
出版年 | 2014 |
卷号 | 50期号:6页码:4662-4685 |
英文摘要 | This study demonstrates and addresses challenges in coupled ecohydrological modeling in deserts, which arise due to unique plant adaptations, marginal growing conditions, slow net primary production rates, and highly variable rainfall. We consider model uncertainty from both structural and parameter errors and present a mechanistic model for the shrub Larrea tridentata (creosote bush) under conditions found in the Mojave National Preserve in southeastern California (USA). Desert-specific plant and soil features are incorporated into the CLM-CN model by Oleson et al. (2010). We then develop a data assimilation framework using the ensemble Kalman filter (EnKF) to estimate model parameters based on soil moisture and leaf-area index observations. A new implementation procedure, the "multisite loop EnKF,’’ tackles parameter estimation difficulties found to affect desert ecohydrological applications. Specifically, the procedure iterates through data from various observation sites to alleviate adverse filter impacts from non-Gaussianity in small desert vegetation state values. It also readjusts inconsistent parameters and states through a model spin-up step that accounts for longer dynamical time scales due to infrequent rainfall in deserts. Observation error variance inflation may also be needed to help prevent divergence of estimates from true values. Synthetic test results highlight the importance of adequate observations for reducing model uncertainty, which can be achieved through data quality or quantity. |
类型 | Article |
语种 | 英语 |
国家 | USA |
收录类别 | SCI-E |
WOS记录号 | WOS:000340430400007 |
WOS关键词 | ENSEMBLE KALMAN FILTER ; REMOTE-SENSING DATA ; TIME-DOMAIN REFLECTOMETRY ; LARREA-TRIDENTATA ; SOIL-WATER ; TERRESTRIAL CARBON ; ECOSYSTEM MODEL ; PARAMETER-ESTIMATION ; CHIHUAHUAN DESERT ; SONORAN DESERT |
WOS类目 | Environmental Sciences ; Limnology ; Water Resources |
WOS研究方向 | Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources |
来源机构 | United States Geological Survey |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/185282 |
作者单位 | 1.US Geol Survey, Menlo Pk, CA 94025 USA; 2.Univ Minnesota, Dept Earth Sci, Minneapolis, MN USA |
推荐引用方式 GB/T 7714 | Ng, Gene-Hua Crystal,Bedford, David R.,Miller, David M.. A mechanistic modeling and data assimilation framework for Mojave Desert ecohydrology[J]. United States Geological Survey,2014,50(6):4662-4685. |
APA | Ng, Gene-Hua Crystal,Bedford, David R.,&Miller, David M..(2014).A mechanistic modeling and data assimilation framework for Mojave Desert ecohydrology.WATER RESOURCES RESEARCH,50(6),4662-4685. |
MLA | Ng, Gene-Hua Crystal,et al."A mechanistic modeling and data assimilation framework for Mojave Desert ecohydrology".WATER RESOURCES RESEARCH 50.6(2014):4662-4685. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。