Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1098/rstb.2013.0197 |
Modelling avian biodiversity using raw, unclassified satellite imagery | |
St-Louis, Veronique1; Pidgeon, Anna M.1; Kuemmerle, Tobias1,2; Sonnenschein, Ruth2; Radeloff, Volker C.1; Clayton, Murray K.3; Locke, Brian A.4; Bash, Dallas4; Hostert, Patrick2 | |
通讯作者 | St-Louis, Veronique |
来源期刊 | PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES
![]() |
ISSN | 0962-8436 |
EISSN | 1471-2970 |
出版年 | 2014 |
卷号 | 369期号:1643 |
英文摘要 | Applications of remote sensing for biodiversity conservation typically rely on image classifications that do not capture variability within coarse land cover classes. Here, we compare two measures derived from unclassified remotely sensed data, a measure of habitat heterogeneity and a measure of habitat composition, for explaining bird species richness and the spatial distribution of 10 species in a semi-arid landscape of New Mexico. We surveyed bird abundance from 1996 to 1998 at 42 plots located in the McGregor Range of Fort Bliss Army Reserve. Normalized Difference Vegetation Index values of two May 1997 Landsat scenes were the basis for among-pixel habitat heterogeneity (image texture), and we used the raw imagery to decompose each pixel into different habitat components (spectral mixture analysis). We used model averaging to relate measures of avian biodiversity to measures of image texture and spectral mixture analysis fractions. Measures of habitat heterogeneity, particularly angular second moment and standard deviation, provide higher explanatory power for bird species richness and the abundance of most species than measures of habitat composition. Using image texture, alone or in combination with other classified imagery-based approaches, for monitoring statuses and trends in biological diversity can greatly improve conservation efforts and habitat management. |
英文关键词 | avian habitat modelling biodiversity conservation Chihuahuan Desert image texture spectral mixture analysis landsat |
类型 | Article |
语种 | 英语 |
国家 | USA ; Germany |
收录类别 | SCI-E |
WOS记录号 | WOS:000334594400008 |
WOS关键词 | SPECTRAL MIXTURE ANALYSIS ; SPECIES RICHNESS ; TEXTURE ANALYSIS ; SCALE PATTERNS ; HABITAT ; VEGETATION ; CLASSIFICATION ; INDEX ; ABUNDANCE ; SELECTION |
WOS类目 | Biology |
WOS研究方向 | Life Sciences & Biomedicine - Other Topics |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/184177 |
作者单位 | 1.Univ Wisconsin, Dept Forest & Wildlife Ecol, Madison, WI 53706 USA; 2.Humboldt Univ, Dept Geog, D-10099 Berlin, Germany; 3.Univ Wisconsin, Dept Stat, Madison, WI 53706 USA; 4.Directorate Environm, Ft Bliss, TX USA |
推荐引用方式 GB/T 7714 | St-Louis, Veronique,Pidgeon, Anna M.,Kuemmerle, Tobias,et al. Modelling avian biodiversity using raw, unclassified satellite imagery[J],2014,369(1643). |
APA | St-Louis, Veronique.,Pidgeon, Anna M..,Kuemmerle, Tobias.,Sonnenschein, Ruth.,Radeloff, Volker C..,...&Hostert, Patrick.(2014).Modelling avian biodiversity using raw, unclassified satellite imagery.PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES,369(1643). |
MLA | St-Louis, Veronique,et al."Modelling avian biodiversity using raw, unclassified satellite imagery".PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES 369.1643(2014). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。