Arid
DOI10.1080/01431161.2014.978035
Land-use and land-cover classification in semi-arid regions using independent component analysis (ICA) and expert classification
Namdar, Mohammad1; Adamowski, Jan2; Saadat, Hossein2; Sharifi, Forood3; Khiri, Afsaneh1
通讯作者Adamowski, Jan
来源期刊INTERNATIONAL JOURNAL OF REMOTE SENSING
ISSN0143-1161
EISSN1366-5901
出版年2014
卷号35期号:24页码:8057-8073
英文摘要

This study was focused on addressing the need for accurate land-use/land-cover classification (LULC) maps in Iran and in other similarly developing countries. To generate and validate a new LULC map for northeastern Iran’s 2037.5 km(2) Hable-roud watershed, a step-by-step process was developed and implemented, consisting of image preprocessing, extraction of training and reference sampling locations, decomposition of multi-spectral thematic mapper bands into features by independent component analysis methods, classification using these features and slope maps, enhancement of land-use classes through image segmentation and zonal statistics, then through consideration of normalized difference vegetation index and climatic zones, followed by ground truthing. This newly developed approach provided maps that distinguished dryland farming, irrigated farmland, forest plantations, and low-, medium-, and high-vegetation density rangelands, while currently available maps for the watershed left 39% of lands unclassified or in combined classes. The new maps’ ground-truthing-based overall accuracy and kappa coefficient were 88.3% and 0.83, respectively. In order to develop such an improved LULC map, it was necessary to go beyond the mere analysis of reflectance information, to incorporating climatic and topographic data through this newly proposed step-by-step approach.


类型Article
语种英语
国家Iran ; Canada
收录类别SCI-E
WOS记录号WOS:000346052800001
WOS关键词OBJECT-ORIENTED CLASSIFICATION ; LEAF-AREA INDEX ; IMAGE SEGMENTATION ; ACCURACY ; IKONOS
WOS类目Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Remote Sensing ; Imaging Science & Photographic Technology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/182768
作者单位1.Forest Range & Watershed Management Org, Tehran, Iran;
2.McGill Univ, Dept Bioresource Engn, Ste Anne De Bellevue, PQ H9X 3V9, Canada;
3.Soil Conservat & Watershed Management Res Inst, Tehran, Iran
推荐引用方式
GB/T 7714
Namdar, Mohammad,Adamowski, Jan,Saadat, Hossein,et al. Land-use and land-cover classification in semi-arid regions using independent component analysis (ICA) and expert classification[J],2014,35(24):8057-8073.
APA Namdar, Mohammad,Adamowski, Jan,Saadat, Hossein,Sharifi, Forood,&Khiri, Afsaneh.(2014).Land-use and land-cover classification in semi-arid regions using independent component analysis (ICA) and expert classification.INTERNATIONAL JOURNAL OF REMOTE SENSING,35(24),8057-8073.
MLA Namdar, Mohammad,et al."Land-use and land-cover classification in semi-arid regions using independent component analysis (ICA) and expert classification".INTERNATIONAL JOURNAL OF REMOTE SENSING 35.24(2014):8057-8073.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
Land-use and land-co(1636KB)期刊论文出版稿开放获取CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Namdar, Mohammad]的文章
[Adamowski, Jan]的文章
[Saadat, Hossein]的文章
百度学术
百度学术中相似的文章
[Namdar, Mohammad]的文章
[Adamowski, Jan]的文章
[Saadat, Hossein]的文章
必应学术
必应学术中相似的文章
[Namdar, Mohammad]的文章
[Adamowski, Jan]的文章
[Saadat, Hossein]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Land-use and land-cover classification in semi-arid regions using independent component analysis (ICA) and expert classification.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。