Arid
DOI10.1016/j.foreco.2014.03.016
Application of Metabolic Scaling Theory to reduce error in local maxima tree segmentation from aerial LiDAR
Swetnam, Tyson L.; Falk, Donald A.
通讯作者Swetnam, Tyson L.
来源期刊FOREST ECOLOGY AND MANAGEMENT
ISSN0378-1127
EISSN1872-7042
出版年2014
卷号323页码:158-167
英文摘要

Identifying individual trees across large forested landscapes is an important benefit of an aerial LiDAR collection. However, current approaches toward individual tree segmentation of aerial LiDAR data do not always reflect how the allometry of tree canopies change with height, age, or competition for limiting space and resources. We developed a variable-area local maxima (VLM) algorithm that incorporates predictions of the Metabolic Scaling Theory (MST) to reduce the frequency of commission error in a local maxima individual tree inventory derived from aerial LiDAR. By comparing the MST prediction to 663 species of North American champion-sized trees (which include the tallest and the largest trees on the planet), and 610 measured trees in semi-arid conifer forests in Arizona and New Mexico we show the MST canopy radius model r(can) = beta h(alpha) where)3 is the normalization constant, h is height, and a is a dynamic exponent predicted by MST to be a = 1, can be applied as a general model in many water-limited conifer forests. MST also informs the estimate of individual tree bole diameter d(bole) (which aerial LiDAR does not measure directly) based on two primary size measures easily obtained from the aerial LiDAR: height h and canopy diameter Cm. A two parameter model beta(h)root d(can) is shown to better predict bole diameter (r(2) = 0.811, RMSE = 7.66 cm) than a single parameter model of either canopy diameter or height alone: beta d(can)(alpha)(r(2) = 0.51 RMSE = 12. 4 cm) or beta h(alpha) (r(2) = 0.753, RMSE = 8.94 cm). By improving methods to identify individual trees and more accurately predict bole diameter, estimates of total forest stand density, structural diversity, above ground biomass and carbon over large landscapes will likewise be improved. (C) 2014 Elsevier B.V. All rights reserved.


英文关键词LiDAR Forest structure Tree size Segmentation Local maxima Allometry
类型Article
语种英语
国家USA
收录类别SCI-E
WOS记录号WOS:000336704500017
WOS关键词GENERAL QUANTITATIVE THEORY ; INDIVIDUAL TREES ; STEM VOLUME ; FOREST STRUCTURE ; CROWN DIAMETER ; BASAL AREA ; SIZE ; DENSITY ; BIOMASS ; HEIGHT
WOS类目Forestry
WOS研究方向Forestry
来源机构University of Arizona
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/182104
作者单位Univ Arizona, Sch Nat Resources & Environm, Tucson, AZ 85721 USA
推荐引用方式
GB/T 7714
Swetnam, Tyson L.,Falk, Donald A.. Application of Metabolic Scaling Theory to reduce error in local maxima tree segmentation from aerial LiDAR[J]. University of Arizona,2014,323:158-167.
APA Swetnam, Tyson L.,&Falk, Donald A..(2014).Application of Metabolic Scaling Theory to reduce error in local maxima tree segmentation from aerial LiDAR.FOREST ECOLOGY AND MANAGEMENT,323,158-167.
MLA Swetnam, Tyson L.,et al."Application of Metabolic Scaling Theory to reduce error in local maxima tree segmentation from aerial LiDAR".FOREST ECOLOGY AND MANAGEMENT 323(2014):158-167.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Swetnam, Tyson L.]的文章
[Falk, Donald A.]的文章
百度学术
百度学术中相似的文章
[Swetnam, Tyson L.]的文章
[Falk, Donald A.]的文章
必应学术
必应学术中相似的文章
[Swetnam, Tyson L.]的文章
[Falk, Donald A.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。