Arid
DOI10.1016/j.compag.2013.10.006
Global sensitivity analysis by means of EFAST and Sobol’ methods and calibration of reduced state-variable TOMGRO model using genetic algorithms
Vazquez-Cruz, M. A.1; Guzman-Cruz, R.1; Lopez-Cruz, I. L.2; Cornejo-Perez, O.1; Torres-Pacheco, I.1; Guevara-Gonzalez, R. G.1
通讯作者Guevara-Gonzalez, R. G.
来源期刊COMPUTERS AND ELECTRONICS IN AGRICULTURE
ISSN0168-1699
EISSN1872-7107
出版年2014
卷号100页码:1-12
英文摘要

One common constraint for using crop models for decision making in precise greenhouse crop management is the need for accurate values of model parameters depending on climate conditions, crop varieties, and management. Estimating these parameters from observed data on the crop, using a crop model, is an interesting possibility. Nevertheless, the accuracy of estimations depends on the sensitivity of the model output variables to the parameters. Therefore, this paper proposes the use of the reduced state variable TOMGRO model which describes nodes, leaf area index, total plant weight, total fruit weight, and mature fruit weight as states variables. The objective of this work was to compare EFAST and Sobol’ sensitivity analysis methods to determine the most sensitive parameters for TOMGRO model outputs. A former sensitivity analysis showed that 8 parameters were the most sensitive and they were calibrated using genetic algorithms (GAs) to adapt the model to semi-arid weather conditions of Central Mexico. Genetic algorithms are important heuristic search algorithms for optimization problems and have been used to calibrate non-linear models related to control of greenhouse climate conditions. Simulation and analysis of the TOMGRO model showed that the estimations for the state variables are close to the measured data. The model could be adapted for simulating other greenhouse crops by means of sensitivity analysis and calibration. (C) 2013 Elsevier B.V. All rights reserved.


英文关键词TOMGRO Tomato EFAST Sobol Genetic algorithms Sensitivity analysis
类型Article
语种英语
国家Mexico
收录类别SCI-E
WOS记录号WOS:000330144000001
WOS关键词TOMATO GROWTH-MODEL ; DYNAMIC-MODEL ; CROP MODEL ; GREENHOUSE ; LETTUCE ; PLANTS ; TEMPERATURE ; UNCERTAINTY ; VALIDATION ; PARAMETERS
WOS类目Agriculture, Multidisciplinary ; Computer Science, Interdisciplinary Applications
WOS研究方向Agriculture ; Computer Science
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/181457
作者单位1.Univ Autonorna Queretaro, Fac Ingn, CA Ingn Biosistemas, Div Estudios Posgrad, Santiago De Queretaro 76010, Queretaro, Mexico;
2.Univ Autonoma Chapingo, Chapingo 56230, Mexico
推荐引用方式
GB/T 7714
Vazquez-Cruz, M. A.,Guzman-Cruz, R.,Lopez-Cruz, I. L.,等. Global sensitivity analysis by means of EFAST and Sobol’ methods and calibration of reduced state-variable TOMGRO model using genetic algorithms[J],2014,100:1-12.
APA Vazquez-Cruz, M. A.,Guzman-Cruz, R.,Lopez-Cruz, I. L.,Cornejo-Perez, O.,Torres-Pacheco, I.,&Guevara-Gonzalez, R. G..(2014).Global sensitivity analysis by means of EFAST and Sobol’ methods and calibration of reduced state-variable TOMGRO model using genetic algorithms.COMPUTERS AND ELECTRONICS IN AGRICULTURE,100,1-12.
MLA Vazquez-Cruz, M. A.,et al."Global sensitivity analysis by means of EFAST and Sobol’ methods and calibration of reduced state-variable TOMGRO model using genetic algorithms".COMPUTERS AND ELECTRONICS IN AGRICULTURE 100(2014):1-12.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Vazquez-Cruz, M. A.]的文章
[Guzman-Cruz, R.]的文章
[Lopez-Cruz, I. L.]的文章
百度学术
百度学术中相似的文章
[Vazquez-Cruz, M. A.]的文章
[Guzman-Cruz, R.]的文章
[Lopez-Cruz, I. L.]的文章
必应学术
必应学术中相似的文章
[Vazquez-Cruz, M. A.]的文章
[Guzman-Cruz, R.]的文章
[Lopez-Cruz, I. L.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。