Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.5194/cp-10-551-2014 |
Evaluation of modern and mid-Holocene seasonal precipitation of the Mediterranean and northern Africa in the CMIP5 simulations | |
Perez-Sanz, A.1,2; Li, G.2; Gonzalez-Samperiz, P.1; Harrison, S. P.2,3,4 | |
通讯作者 | Perez-Sanz, A. |
来源期刊 | CLIMATE OF THE PAST
![]() |
ISSN | 1814-9324 |
EISSN | 1814-9332 |
出版年 | 2014 |
卷号 | 10期号:2页码:551-568 |
英文摘要 | We analyse the spatial expression of seasonal climates of the Mediterranean and northern Africa in pre-industrial (piControl) and mid-Holocene (midHolocene, 6 yr BP) simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Modern observations show four distinct precipitation regimes characterized by differences in the seasonal distribution and total amount of precipitation: an equatorial band characterized by a double peak in rainfall, the monsoon zone characterized by summer rainfall, the desert characterized by low seasonality and total precipitation, and the Mediterranean zone characterized by summer drought. Most models correctly simulate the position of the Mediterranean and the equatorial climates in the piControl simulations, but overestimate the extent of monsoon influence and underestimate the extent of desert. However, most models fail to reproduce the amount of precipitation in each zone. Model biases in the simulated magnitude of precipitation are unrelated to whether the models reproduce the correct spatial patterns of each regime. In the midHolocene, the models simulate a reduction in winter rainfall in the equatorial zone, and a northward expansion of the monsoon with a significant increase in summer and autumn rainfall. Precipitation is slightly increased in the desert, mainly in summer and autumn, with northward expansion of the monsoon. Changes in the Mediterranean are small, although there is an increase in spring precipitation consistent with palaeo-observations of increased growing-season rainfall. Comparison with reconstructions shows most models underestimate the mid-Holocene changes in annual precipitation, except in the equatorial zone. Biases in the piControl have only a limited influence on midHolocene anomalies in ocean-atmosphere models; carbon-cycle models show no relationship between piControl bias and midHolocene anomalies. Biases in the prediction of the midHolocene monsoon expansion are unrelated to how well the models simulate changes in Mediterranean climate. |
类型 | Article |
语种 | 英语 |
国家 | Spain ; Australia ; England |
收录类别 | SCI-E |
WOS记录号 | WOS:000335374600009 |
WOS关键词 | LAST GLACIAL MAXIMUM ; CLIMATE-CHANGE PROJECTIONS ; PMIP2 COUPLED SIMULATIONS ; SYSTEM MODEL ; ATMOSPHERIC CIRCULATION ; SYNERGISTIC FEEDBACKS ; FUTURE PROJECTIONS ; CULTURAL-CHANGE ; MID-LATITUDE ; VEGETATION |
WOS类目 | Geosciences, Multidisciplinary ; Meteorology & Atmospheric Sciences |
WOS研究方向 | Geology ; Meteorology & Atmospheric Sciences |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/181413 |
作者单位 | 1.IPE CSIC, Pyrenean Inst Ecol, Zaragoza 50059, Spain; 2.Macquarie Univ, Dept Biol Sci, N Ryde, NSW 2109, Australia; 3.Univ Reading, Ctr Climates, Reading RG6 6AB, Berks, England; 4.Univ Reading, SAGES, Dept Geog & Environm Sci, Reading RG6 6AB, Berks, England |
推荐引用方式 GB/T 7714 | Perez-Sanz, A.,Li, G.,Gonzalez-Samperiz, P.,et al. Evaluation of modern and mid-Holocene seasonal precipitation of the Mediterranean and northern Africa in the CMIP5 simulations[J],2014,10(2):551-568. |
APA | Perez-Sanz, A.,Li, G.,Gonzalez-Samperiz, P.,&Harrison, S. P..(2014).Evaluation of modern and mid-Holocene seasonal precipitation of the Mediterranean and northern Africa in the CMIP5 simulations.CLIMATE OF THE PAST,10(2),551-568. |
MLA | Perez-Sanz, A.,et al."Evaluation of modern and mid-Holocene seasonal precipitation of the Mediterranean and northern Africa in the CMIP5 simulations".CLIMATE OF THE PAST 10.2(2014):551-568. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。