Arid
DOI10.5194/amt-7-839-2014
Multi-modal analysis of aerosol robotic network size distributions for remote sensing applications: dominant aerosol type cases
Taylor, M.; Kazadzis, S.; Gerasopoulos, E.
通讯作者Taylor, M.
来源期刊ATMOSPHERIC MEASUREMENT TECHNIQUES
ISSN1867-1381
EISSN1867-8548
出版年2014
卷号7期号:3页码:839-858
英文摘要

To date, size distributions obtained from the aerosol robotic network (AERONET) have been fit with bi-lognormals defined by six secondary microphysical parameters: the volume concentration, effective radius, and the variance of fine and coarse particle modes. However, since the total integrated volume concentration is easily calculated and can be used as an accurate constraint, the problem of fitting the size distribution can be reduced to that of deducing a single free parameter - the mode separation point. We present a method for determining the mode separation point for equivalent-volume bi-lognormal distributions based on optimization of the root mean squared error and the coefficient of determination. The extracted secondary parameters are compared with those provided by AERONET’s Level 2.0 Version 2 inversion algorithm for a set of benchmark dominant aerosol types, including desert dust, biomass burning aerosol, urban sulphate and sea salt. The total volume concentration constraint is then also lifted by performing multi-modal fits to the size distribution using nested Gaussian mixture models, and a method is presented for automating the selection of the optimal number of modes using a stopping condition based on Fisher statistics and via the application of statistical hypothesis testing. It is found that the method for optimizing the location of the mode separation point is independent of the shape of the aerosol volume size distribution (AVSD), does not require the existence of a local minimum in the size interval 0.439 mu m < r < 0.992 mu m, and shows some potential for optimizing the bi-lognormal fitting procedure used by AERONET particularly in the case of desert dust aerosol. The AVSD of impure marine aerosol is found to require three modes. In this particular case, bi-lognormals fail to recover key features of the AVSD. Fitting the AVSD more generally with multi-modal models allows automatic detection of a statistically significant number of aerosol modes, is applicable to a very diverse range of aerosol types, and gives access to the secondary microphysical parameters of additional modes currently not available from bi-lognormal fitting methods.


类型Article
语种英语
国家Greece
收录类别SCI-E
WOS记录号WOS:000334105700011
WOS关键词SKY RADIANCE MEASUREMENTS ; OPTICAL-PROPERTIES ; URBAN/INDUSTRIAL AEROSOL ; INVERSION ALGORITHM ; GOCART MODEL ; RETRIEVAL ; SATELLITE ; DEPTH ; SUN ; INTENSITY
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/180946
作者单位NOA, IERSD, Athens 15236, Greece
推荐引用方式
GB/T 7714
Taylor, M.,Kazadzis, S.,Gerasopoulos, E.. Multi-modal analysis of aerosol robotic network size distributions for remote sensing applications: dominant aerosol type cases[J],2014,7(3):839-858.
APA Taylor, M.,Kazadzis, S.,&Gerasopoulos, E..(2014).Multi-modal analysis of aerosol robotic network size distributions for remote sensing applications: dominant aerosol type cases.ATMOSPHERIC MEASUREMENT TECHNIQUES,7(3),839-858.
MLA Taylor, M.,et al."Multi-modal analysis of aerosol robotic network size distributions for remote sensing applications: dominant aerosol type cases".ATMOSPHERIC MEASUREMENT TECHNIQUES 7.3(2014):839-858.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Taylor, M.]的文章
[Kazadzis, S.]的文章
[Gerasopoulos, E.]的文章
百度学术
百度学术中相似的文章
[Taylor, M.]的文章
[Kazadzis, S.]的文章
[Gerasopoulos, E.]的文章
必应学术
必应学术中相似的文章
[Taylor, M.]的文章
[Kazadzis, S.]的文章
[Gerasopoulos, E.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。