Arid
DOI10.1007/s11269-013-0432-y
Application of NN-ARX Model to Predict Groundwater Levels in the Neishaboor Plain, Iran
Izady, A.1,2; Davary, K.1; Alizadeh, A.1; Nia, A. Moghaddam3,4; Ziaei, A. N.1; Hasheminia, S. M.1
通讯作者Nia, A. Moghaddam
来源期刊WATER RESOURCES MANAGEMENT
ISSN0920-4741
EISSN1573-1650
出版年2013
卷号27期号:14页码:4773-4794
英文摘要

There is no doubt that groundwater is an important and vital source of water supply in arid and semi-arid areas. Therefore, prediction of groundwater level fluctuations is necessary for planning conjunctive use in these areas. This research was aimed to predict groundwater levels in the Neishaboor plain using Neural Network - AutoRegressive eXtra input (NN-ARX) and Static-NN models. The NN-ARX model determines a nonlinear ARX model of a dynamic system by training a hidden layer neural network with the Levenberg-Marquardt algorithm. In this model the current outputs depend not only on the current inputs, but also on the inputs and outputs at the pervious time periods. The available observation wells in the study area were clustered according to their fluctuation behavior using the "Ward" method, which resulted in six areal zones. Then, for each cluster, an observation well was selected as its representative, and for each zone, values of monthly precipitation, temperature and groundwater extraction were estimated. The best input of the Static-NN model was identified using combination of Gamma Test and Genetic Algorithm. Also, Gamma Test is applied to identify the length of the training dataset. The results showed that the NN-ARX model was suitable and more practical. The performance indicators (R-2 = 0.97, RMSE = 0.03 m, ME = -0.07 m and R (2) = 0.81, RMSE = 0.35 m, ME = 0.60 m, respectively for the best and worst performance of model) reveals the effectiveness of this model. Moreover, these results were compared with the results of a static-NN model using t-test, which showed the superiority of the NN-ARX over the static-NN.


英文关键词Groundwater NN-ARX model Ward clustering Gamma test Genetic algorithm Iran
类型Article
语种英语
国家Iran ; USA
收录类别SCI-E
WOS记录号WOS:000326082100004
WOS关键词ARTIFICIAL NEURAL-NETWORKS ; SPATIAL INTERPOLATION ; TIME-SERIES ; GAMMA-TEST ; IDENTIFICATION ; MEMORY
WOS类目Engineering, Civil ; Water Resources
WOS研究方向Engineering ; Water Resources
来源机构University of Arizona
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/180216
作者单位1.Ferdowsi Univ Mashhad, Water Engn Dept, Coll Agr, Mashhad, Iran;
2.Univ Arizona, Soil Water & Environm Sci Dept, Tucson, AZ USA;
3.Univ Tehran, Dept Arid & Mountainous Reg Reclamat, Fac Nat Resources, Karaj, Iran;
4.Univ Tehran, Ctr Excellence Sustainable Watershed Management, Fac Nat Resources, Karaj, Iran
推荐引用方式
GB/T 7714
Izady, A.,Davary, K.,Alizadeh, A.,et al. Application of NN-ARX Model to Predict Groundwater Levels in the Neishaboor Plain, Iran[J]. University of Arizona,2013,27(14):4773-4794.
APA Izady, A.,Davary, K.,Alizadeh, A.,Nia, A. Moghaddam,Ziaei, A. N.,&Hasheminia, S. M..(2013).Application of NN-ARX Model to Predict Groundwater Levels in the Neishaboor Plain, Iran.WATER RESOURCES MANAGEMENT,27(14),4773-4794.
MLA Izady, A.,et al."Application of NN-ARX Model to Predict Groundwater Levels in the Neishaboor Plain, Iran".WATER RESOURCES MANAGEMENT 27.14(2013):4773-4794.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Izady, A.]的文章
[Davary, K.]的文章
[Alizadeh, A.]的文章
百度学术
百度学术中相似的文章
[Izady, A.]的文章
[Davary, K.]的文章
[Alizadeh, A.]的文章
必应学术
必应学术中相似的文章
[Izady, A.]的文章
[Davary, K.]的文章
[Alizadeh, A.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。