Arid
DOI10.1007/s11269-012-0170-6
Statistical Downscaling of River Runoff in a Semi Arid Catchment
Samadi, S.4; Carbone, Gregory J.4; Mahdavi, M.1; Sharifi, F.2; Bihamta, M. R.3
通讯作者Samadi, S.
来源期刊WATER RESOURCES MANAGEMENT
ISSN0920-4741
出版年2013
卷号27期号:1页码:117-136
英文摘要

Linear and non-linear statistical ’downscaling’ study is applied to relate large-scale climate information from a general circulation model (GCM) to local-scale river flows in west Iran. This study aims to investigate and evaluate the more promising downscaling techniques, and provides a through inter comparison study using Karkheh catchment as an experimental site in a semi arid region for the years of 2040 to 2069. A hybrid conceptual hydrological model was used in conjunction with modeled outcomes from a General Circulation Model (GCM), HadCM3, along with two downscaling techniques, Statistical Downscaling Model (SDSM) and Artificial Neural Network (ANN), to determine how future streamflow may change in a semi arid catchment. The results show that the choice of a downscaling algorithm having a significant impact on the streamflow estimations for a semi-arid catchment, which are mainly, influenced, respectively, by atmospheric precipitation and temperature projections. According to the SDSM and ANN projections, daily temperature will increase up to +0.58 0C (+3.90 %) and +0.48 0C (+3.48 %), and daily precipitation will decrease up to -0.1 mm (-2.56 %) and -0.4 mm (-2.82 %) respectively. Moreover streamflow changes corresponding to downscaled future projections presented a reduction in mean annual flow of -3.7 m boolean AND 3/s and -9.47 m boolean AND 3/s using SDSM and ANN outputs respectively. The results suggest a significant reduction of streamflow in both downscaling projections, particularly in winter. The discussion considers the performance of each statistical method for downscaling future flow at catchment scale as well as the relationship between atmospheric processes and flow variability and changes.


英文关键词Statistical downscaling Artificial neural network Streamflow Semi-arid catchment
类型Article
语种英语
国家Iran ; USA
收录类别SCI-E
WOS记录号WOS:000312731300007
WOS关键词GCM SIMULATIONS ; CLIMATE-CHANGE ; STREAMFLOW ; MODELS ; METHODOLOGY ; IMPACT ; IRAN
WOS类目Engineering, Civil ; Water Resources
WOS研究方向Engineering ; Water Resources
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/180199
作者单位1.Univ Tehran, Fac Nat Resources, Karaj, Iran;
2.SCWMRI, Tehran, Iran;
3.Univ Tehran, Coll Agr & Nat Resources, Karaj, Iran;
4.Univ S Carolina, Columbia, SC 29208 USA
推荐引用方式
GB/T 7714
Samadi, S.,Carbone, Gregory J.,Mahdavi, M.,et al. Statistical Downscaling of River Runoff in a Semi Arid Catchment[J],2013,27(1):117-136.
APA Samadi, S.,Carbone, Gregory J.,Mahdavi, M.,Sharifi, F.,&Bihamta, M. R..(2013).Statistical Downscaling of River Runoff in a Semi Arid Catchment.WATER RESOURCES MANAGEMENT,27(1),117-136.
MLA Samadi, S.,et al."Statistical Downscaling of River Runoff in a Semi Arid Catchment".WATER RESOURCES MANAGEMENT 27.1(2013):117-136.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Samadi, S.]的文章
[Carbone, Gregory J.]的文章
[Mahdavi, M.]的文章
百度学术
百度学术中相似的文章
[Samadi, S.]的文章
[Carbone, Gregory J.]的文章
[Mahdavi, M.]的文章
必应学术
必应学术中相似的文章
[Samadi, S.]的文章
[Carbone, Gregory J.]的文章
[Mahdavi, M.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。