Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1016/j.soilbio.2013.05.016 |
Temperature sensitivity of bacterial growth in a hot desert soil with large temperature fluctuations | |
van Gestel, Natasja C.1; Reischke, Stephanie2; Baath, Erland2 | |
通讯作者 | van Gestel, Natasja C. |
来源期刊 | SOIL BIOLOGY & BIOCHEMISTRY
![]() |
ISSN | 0038-0717 |
出版年 | 2013 |
卷号 | 65页码:180-185 |
英文摘要 | Hot desert ecosystems are characterized by high soil temperatures with large fluctuations annually and diurnally. Thus, one could hypothesize that not only the microbial community would be adapted to high temperatures, but also have a large temperature range conducive for growth. We determined the temperature sensitivity of the soil bacterial community from the Chihuahuan Desert, Big Bend National Park, Texas, USA, using leucine incorporation as a proxy for bacterial growth. Soil samples were taken during early spring and mid-summer from the surface (0-5 cm) and deeper (15-20 cm) soil layers. Mean winter soil temperature preceding the spring samples was 15 degrees C and in summer 36 degrees C at both depths, but with larger amplitude in the top soil than deeper down. T-min was significantly lower in the top 0-5 cm than at 15-20 cm, -1.2 and 0.0 degrees C, respectively. T-opt also was higher in the top soil than deeper down, 42.9 and 41.4 degrees C, respectively, resulting in a larger temperature range for growth (T-opt - T-min) in the top soil reflecting the larger temperature fluctuations in this layer. There were no significant differences in cardinal temperatures for bacterial growth in soils sampled in early spring and mid-summer despite large seasonal differences in temperatures, showing that long periods of colder temperatures was less important than periods of high temperatures as selection pressure for temperature sensitivity. Comparing with earlier results from Antarctic soils (Rinnan et al., 2009), which in contrast represent an extremely low temperature environment, we suggest that the range of temperature cardinal temperatures for soil bacterial communities globally varies from around -15 to 0 degrees C for T-min and 25 to 45 degrees C for T-opt. (C) 2013 Elsevier Ltd. All rights reserved. |
英文关键词 | Temperature sensitivity Bacterial growth Desert Leucine incorporation Temperature fluctuations Community adaptation |
类型 | Article |
语种 | 英语 |
国家 | USA ; Sweden |
收录类别 | SCI-E |
WOS记录号 | WOS:000323686800022 |
WOS关键词 | LEUCINE INCORPORATION ; ADAPTATION ; THYMIDINE ; COMMUNITIES ; RESPIRATION ; ASSEMBLAGES ; FUNGI ; MODEL |
WOS类目 | Soil Science |
WOS研究方向 | Agriculture |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/179974 |
作者单位 | 1.Texas Tech Univ, Dept Biol Sci, Lubbock, TX 79409 USA; 2.Lund Univ, Dept Biol, Sect Microbial Ecol, SE-22362 Lund, Sweden |
推荐引用方式 GB/T 7714 | van Gestel, Natasja C.,Reischke, Stephanie,Baath, Erland. Temperature sensitivity of bacterial growth in a hot desert soil with large temperature fluctuations[J],2013,65:180-185. |
APA | van Gestel, Natasja C.,Reischke, Stephanie,&Baath, Erland.(2013).Temperature sensitivity of bacterial growth in a hot desert soil with large temperature fluctuations.SOIL BIOLOGY & BIOCHEMISTRY,65,180-185. |
MLA | van Gestel, Natasja C.,et al."Temperature sensitivity of bacterial growth in a hot desert soil with large temperature fluctuations".SOIL BIOLOGY & BIOCHEMISTRY 65(2013):180-185. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。