Arid
DOI10.1016/j.neuroimage.2013.05.049
Spatiotemporal linear mixed effects modeling for the mass-univariate analysis of longitudinal neuroimage data
Bernal-Rusiel, Jorge L.1; Reuter, Martin1,2; Greve, Douglas N.1; Fischl, Bruce1,3; Sabuncu, Mert R.1,3
通讯作者Sabuncu, Mert R.
来源期刊NEUROIMAGE
ISSN1053-8119
EISSN1095-9572
出版年2013
卷号81页码:358-370
英文摘要

We present an extension of the Linear Mixed Effects (LME) modeling approach to be applied to the mass-univariate analysis of longitudinal neuroimaging (LNI) data. The proposed method, called spatiotemporal LME or ST-LME, builds on the flexible LME framework and exploits the spatial structure in image data. We instantiated ST-LME for the analysis of cortical surface measurements (e.g. thickness) computed by FreeSurfer, a widely-used brain Magnetic Resonance Image (MRI) analysis software package. We validate the proposed ST-LME method and provide a quantitative and objective empirical comparison with two popular alternative methods, using two brain MRI datasets obtained from the Alzheimer’s disease neuroimaging initiative (ADNI) and Open Access Series of Imaging Studies (OASIS). Our experiments revealed that ST-LME offers a dramatic gain in statistical power and repeatability of findings, while providing good control of the false positive rate. (C) 2013 Elsevier Inc. All rights reserved.


英文关键词Longitudinal studies Linear Mixed Effects models Statistical analysis Mass-univariate analysis
类型Article
语种英语
国家USA
收录类别SCI-E
WOS记录号WOS:000322934400035
WOS关键词MILD COGNITIVE IMPAIRMENT ; SURFACE-BASED ANALYSIS ; OPEN ACCESS SERIES ; CORTICAL THICKNESS ; BRAIN ATROPHY ; ALZHEIMERS-DISEASE ; HIPPOCAMPAL ATROPHY ; BAYESIAN-INFERENCE ; MRI DATA ; VOLUME
WOS类目Neurosciences ; Neuroimaging ; Radiology, Nuclear Medicine & Medical Imaging
WOS研究方向Neurosciences & Neurology ; Radiology, Nuclear Medicine & Medical Imaging
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/179021
作者单位1.Harvard Univ, Athinoula A Martinos Ctr Biomed Imaging, Sch Med, Massachusetts Gen Hosp, Charlestown, MA USA;
2.MIT, Dept Mech Engn, Cambridge, MA 02139 USA;
3.MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
推荐引用方式
GB/T 7714
Bernal-Rusiel, Jorge L.,Reuter, Martin,Greve, Douglas N.,et al. Spatiotemporal linear mixed effects modeling for the mass-univariate analysis of longitudinal neuroimage data[J],2013,81:358-370.
APA Bernal-Rusiel, Jorge L.,Reuter, Martin,Greve, Douglas N.,Fischl, Bruce,&Sabuncu, Mert R..(2013).Spatiotemporal linear mixed effects modeling for the mass-univariate analysis of longitudinal neuroimage data.NEUROIMAGE,81,358-370.
MLA Bernal-Rusiel, Jorge L.,et al."Spatiotemporal linear mixed effects modeling for the mass-univariate analysis of longitudinal neuroimage data".NEUROIMAGE 81(2013):358-370.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bernal-Rusiel, Jorge L.]的文章
[Reuter, Martin]的文章
[Greve, Douglas N.]的文章
百度学术
百度学术中相似的文章
[Bernal-Rusiel, Jorge L.]的文章
[Reuter, Martin]的文章
[Greve, Douglas N.]的文章
必应学术
必应学术中相似的文章
[Bernal-Rusiel, Jorge L.]的文章
[Reuter, Martin]的文章
[Greve, Douglas N.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。