Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1016/j.neuroimage.2013.05.049 |
Spatiotemporal linear mixed effects modeling for the mass-univariate analysis of longitudinal neuroimage data | |
Bernal-Rusiel, Jorge L.1; Reuter, Martin1,2; Greve, Douglas N.1; Fischl, Bruce1,3; Sabuncu, Mert R.1,3 | |
通讯作者 | Sabuncu, Mert R. |
来源期刊 | NEUROIMAGE
![]() |
ISSN | 1053-8119 |
EISSN | 1095-9572 |
出版年 | 2013 |
卷号 | 81页码:358-370 |
英文摘要 | We present an extension of the Linear Mixed Effects (LME) modeling approach to be applied to the mass-univariate analysis of longitudinal neuroimaging (LNI) data. The proposed method, called spatiotemporal LME or ST-LME, builds on the flexible LME framework and exploits the spatial structure in image data. We instantiated ST-LME for the analysis of cortical surface measurements (e.g. thickness) computed by FreeSurfer, a widely-used brain Magnetic Resonance Image (MRI) analysis software package. We validate the proposed ST-LME method and provide a quantitative and objective empirical comparison with two popular alternative methods, using two brain MRI datasets obtained from the Alzheimer’s disease neuroimaging initiative (ADNI) and Open Access Series of Imaging Studies (OASIS). Our experiments revealed that ST-LME offers a dramatic gain in statistical power and repeatability of findings, while providing good control of the false positive rate. (C) 2013 Elsevier Inc. All rights reserved. |
英文关键词 | Longitudinal studies Linear Mixed Effects models Statistical analysis Mass-univariate analysis |
类型 | Article |
语种 | 英语 |
国家 | USA |
收录类别 | SCI-E |
WOS记录号 | WOS:000322934400035 |
WOS关键词 | MILD COGNITIVE IMPAIRMENT ; SURFACE-BASED ANALYSIS ; OPEN ACCESS SERIES ; CORTICAL THICKNESS ; BRAIN ATROPHY ; ALZHEIMERS-DISEASE ; HIPPOCAMPAL ATROPHY ; BAYESIAN-INFERENCE ; MRI DATA ; VOLUME |
WOS类目 | Neurosciences ; Neuroimaging ; Radiology, Nuclear Medicine & Medical Imaging |
WOS研究方向 | Neurosciences & Neurology ; Radiology, Nuclear Medicine & Medical Imaging |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/179021 |
作者单位 | 1.Harvard Univ, Athinoula A Martinos Ctr Biomed Imaging, Sch Med, Massachusetts Gen Hosp, Charlestown, MA USA; 2.MIT, Dept Mech Engn, Cambridge, MA 02139 USA; 3.MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA |
推荐引用方式 GB/T 7714 | Bernal-Rusiel, Jorge L.,Reuter, Martin,Greve, Douglas N.,et al. Spatiotemporal linear mixed effects modeling for the mass-univariate analysis of longitudinal neuroimage data[J],2013,81:358-370. |
APA | Bernal-Rusiel, Jorge L.,Reuter, Martin,Greve, Douglas N.,Fischl, Bruce,&Sabuncu, Mert R..(2013).Spatiotemporal linear mixed effects modeling for the mass-univariate analysis of longitudinal neuroimage data.NEUROIMAGE,81,358-370. |
MLA | Bernal-Rusiel, Jorge L.,et al."Spatiotemporal linear mixed effects modeling for the mass-univariate analysis of longitudinal neuroimage data".NEUROIMAGE 81(2013):358-370. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。